A GEOMETRIC PROBLEM OF SHERMAN STEIN

M. K. Fort, Jr.

1. Introduction. Recently, Sherman Stein [1] has proposed the following problem:

Let $J \subset R_{2}$ be a rectifiable Jordan curve, with the property that for each rotation R. there is a translation T, depending on R, such that $(T R J) \cap J$ has a nonzero length. Must J contain the arc of a circle?

We interpret "length" to be the measure induced on J by arc length, and in $\S 2$ we give an example to show that J need not contain the arc of a circle. In $\S 3$ we show that if "nonzero length" is replaced by "nondegenerate component", then J must necessarily contain an arc of a circle.
2. An example. Let C be a circle in R_{2}, and let L be the circumference of C. Using standard arguments, we can obtain a subset D of C which is open relative to C, which is dense in C, and which has length less than $L / 3$. We define J to be the point set which is obtained if we modify C by replacing each component K of D by the line segment whose end points are the end points of $K . J$ is obviously a rectifiable Jordan curve. If R is a rotation, we choose T in such a way that $T R$ maps C onto C. It follows that $(T R J) \cap J$ contains $C-(D \cup T R D)$. Since D and $T R D$ each have length less than $L / 3$, we see that $(T R J) \cap J$ has length greater than $L / 3$. The curve J which we have defined satisfies the conditions of Stein's problem, but J does not contain an arc of a circle.
3. A theorem about Jordan curves. Before stating our theorem, it is convenient to prove first a key lemma about arcs in R_{2}. It seems to the author that this lemma is quite interesting in itself.

Lemma. If A and B are topological arcs in R_{2} and A contains an infinite number of subarcs, each of which is congruent to B, then B is either an arc of a circle or a segment of a straight line.

Proof. We assign natural linear orderings to A and B, and define G to be the set of all isometries of R_{2} onto R_{2} which map B into A. Either an infinite number of members of G are order preserving or an infinite number of members of G are order reversing, and we may

[^0]
[^0]: Received October 31, 1955. The results contained in this paper were obtained during a period when the author was partially supported by National Science Foundation grant NSF G 1353.

