THE REPRESENTATION OF AN ANALYTIC FUNCTION BY GENERAL LAGUERRE SERIES

OTTO SZÁSZ AND NELSON YEARDLEY

1. Introduction. Hille [4] has solved the problem of finding necessary and sufficient conditions that a function be represented by Hermitian series in a strip. Pollard [7] has solved the analogous problem in a strip for Laguerre series of order zero. We propose to solve the problem for Laguerre series of order $\alpha(\alpha > -1)$ getting as a region of convergence a parabola instead of a strip. From this theorem the generalization of Pollard's result follows immediately.

We say that a function of a complex variable f(z) where $z = x + iy = re^{i\theta}$ possesses a Laguerre series of order $\alpha(\alpha > -1)$ or a general Laguerre series if

(1.1)
$$f(z) \sim \sum_{n=0}^{\infty} a_n^{(\alpha)} L_n^{(\alpha)}(z)$$
 $(n = 0, 1, 2, \cdots)$

where

(1.2)
$$a_n^{(\alpha)} = \left\{ \binom{n+\alpha}{n} \Gamma(\alpha+1) \right\}^{-1} \int_0^\infty e^{-x} x^\alpha L_n^{(\alpha)}(x) f(x) dx \qquad (\alpha > -1)$$

 $L_n^{(\alpha)}(x)$ is the Laguerre polynomial of order $\alpha > -1$ and degree *n* given by [8 p. 97 formula 5.1.6] and the above series converges. The series is said to be the *Laguerre expansion* of f(z).

We define

(1.3)
$$d_{\alpha} \equiv -\lim_{n} \sup (2n^{\frac{1}{2}})^{-1} \log |a_{n}^{\alpha}|$$

and by the notation

(1.4)
$$z \in p(b)$$
 $b > 0$; $z \in p(b)$

we mean respectively that z lies in the open (closed) parabolic region

$$p(b): \ y^2 < 4b^2(x+b^2) \ ; \qquad \overline{p}(b): \ y^2 \leqq 4b^2(x+b^2) \ .$$

If we select that branch of $z^{\frac{1}{2}}$ for which $(-z)^{\frac{1}{2}}$ is real and positive when z < 0 then $\Re(-z)^{\frac{1}{2}} = \{\frac{1}{2}(r-x)\}^{\frac{1}{2}} = b^2$ gives the equation $y^2 = 4 b^2(x+b^2)$ of the parabola which is the boundary of the above regions.

The main result of this paper is the following.

THEOREM A. In order that the function f(z) possess a Laguerre series of order α ($\alpha > -1$) (or a general Laguerre series) which converges to it Received March 28, 1958.