ON THE LEBESGUE AREA OF A DOUBLED MAP

Paul Slepian

If X is a metric space and A is a non-empty closed subset of X we construct a space Y by doubling X about A in such a way that X is imbedded homeomorphically in Y, the image of A is the boundary of the image of X, and X is also homeomorphic to the closure of the complement of its homeomorphic image in Y. In this way any function f on X may be doubled in a natural way to yield a function F on Y. In 17 it is shown that if X and A satisfy certain triangulability conditions, and f is continuous to Euclidean n space, E_{n}, with $n \geqq k \geqq 2$, then $L_{k}(F) \leqq 2 L_{k}(f)$, with L_{k} denoting k-dimensional Lebesgue area. In 18, 21 and 22 the restrictions of 2-dimensionality are used to show that, when $k=2$, we have in fact $L_{2}(F)=2 L_{2}(f)$.

In particular if (X, A) is a 2-dimensional manifold with boundary, then Y is a compact 2 -dimensional manifold. Furthermore, if X is finitely triangulable, then X and A satisfy the required triangulability conditions and $L_{2}(F)=2 L_{2}(f)$. Thus to compute the Lebesgue area of f, we need only to know the Lebesgue area of F, whose domain is a compact 2-dimensional manifold.

Our terminology is consistent with [1]; however, some additional notations are cited below

1. Notations.

(i) 0 is the empty set,
(ii) $\{x\}$ is the set whose sole element is x.
(iii) $\sigma A=\{x \mid$ for some $y, x \in y \in A\}$.
(iv) R is the set of real numbers.
(v) $A^{\cap}=\{x \mid x \subset A\}$.
(vi) $N(f, A, y)$ is the number of elements, possibly infinite, in the set $\{x \mid x \in A$ and $y=f(x)\}$.
(vii) $\operatorname{dmn} f=\{x \mid$ for some $y,(x, y) \in f\}$.
(viii) $\operatorname{rng} f=\{y \mid$ for some $x,(x, y) \in f\}$.

2. Agreement.

(i) If X is a topological space and i is a positive integer, then $X^{i}=\{A \mid A$ is an i-cell in $A\}$.

[^0]
[^0]: Received May 27, 1958. This work was supported in part by a research grant from the National Science Foundation. This paper forms one chapter of a doctoral thesis presented at Brown University, June 1956. The author is indebted to Professor H. Federer for his supervision of this thesis, and his valuable suggestions and criticisms.

