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1. Introduction. It is known that a trigonometric series
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does not have to satisfy condition on the size of its coefficients stronger
than the trivial one
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in order to be the Fourier series of a continuous function. One theorem
which gives precise content to this general statement is the following :

If {Ww}ϋΌo is a sequence of non-negative numbers such that
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whenever (1) is the Fourier series of a continuous function, then
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The fact that (1) is the Fourier series of a continuous function does
not by any means imply the same for
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Therefore the following rather neglected theorem of Paley [5] lies deeper
than the result just stated.

THEOREM 1 (Paley). If {wn}™ is a sequence of non-negative numbers
such that
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whenever (2) is the Fourier series of a continuous function, then
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In the next section we offer a new and simple proof of this theorem.
The proof depends on the fact that the conjugate series of a Fourier-
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