LINEAR INEQUALITIES AND QUADRATIC FORMS

Jerry W. Gaddum

1. Introduction. There are known criteria for a quadratic form to be positive definite, and criteria for a system of linear inequalities to have a solution. In this paper the two problems are shown to be related. The principal theorem is Theorem 5.1.
2. Definitions and Notation. We will consider a quadratic form

$$
Z(x) \equiv \sum_{1}^{n} a_{i j} x_{i} x_{j}, \text { with } a_{i j}=a_{j i},
$$

and ask whether it is positive in the first orthant, i.e., whether it is positive for non-negative values of the x_{i}.

If $Z(x)>0$ for $x \geqq 0$, we call it conditionally definite and if $Z(x) \geqq$ for $x \geqq 0$, we call it conditionally semi-definite. (Since we will only be concerned with positive definiteness, we will omit the word "positive" throughout the paper.) Finally, if $Z(x) \geqq 0$ when $x \geqq 0$ and $Z(x)>0$ when $x>0$, we call $Z(x)$ conditionally almost-definite.

As a matter of notation, we recall that $A x \geq 0$ or $x \geq 0$ means that at least one component of the vector in question is positive.

In discussing $Z(x)$ we shall have occasion to refer to the form obtained by setting $x_{k_{1}}, x_{k_{2}}, \cdots, x_{k_{s}}$ equal to zero, that is, the form

$$
\sum_{i, j \neq k_{1}, \cdots, k_{s}} a_{i j} x_{i} x_{i j} .
$$

We shall call this a principal minor of $Z(x)$ and denote it $Z_{k_{1} \ldots k_{s}}(x)$. In referring to the corresponding matrix, $A^{k_{4}, \ldots k_{s}}$ we will assume x has the appropriate number of components when we write $A^{k_{1} \cdots k_{s}} x$.
3. Quadratic forms in the first orthant. We first prove a theorem which is not strictly necessary but may be some intrinsic interest. It concerns the game whose matrix is $A=\left(a_{i j}\right)$ and whose value is v. (For completeness we remind the reader of the following definition of the value v of a game with matrix $B=\left(b_{i j}\right), i=1, \cdots, m ; j=1, \cdots, n$. Let X be the set of vectors $x=\left(x_{1}, \cdots, x_{m}\right)$ with $x_{1} \geqq 0$ and $\sum_{1}^{m} x_{i}=1$; Y the set of $y=\left(y_{1}, \cdots, y_{n}\right)$ with $y_{j} \geqq 0$ and $\sum_{1}^{n} y_{j}=1$. Then it can be shown that

$$
\max _{x \in X} \min _{y \in Y} \sum b_{i j} x_{i} y_{j}=\min _{y \in Y} \max _{x \in X} \sum b_{i j} x_{i} x_{j},
$$

and this quantity is called the value of the game with matrix B).

[^0]
[^0]: Received December 9, 1957.

