ON A COMMUTATIVE EXTENSION OF A COMMUTATIVE BANACH ALGEBRA

CIPRIAN FOIAS

Let A be a commutative Banach algebra without identity such that (1.a) there exists an approximate identity (i.e. there exists a net $\{u_{\alpha}\} \subset A$, so that $||u_{\alpha}|| = 1$ and $u_{\alpha}x \to x$ for all $x \in A$);

(1.b) if \hat{A} designates Gelfand's representation of A [3], and M the space of regular maximal ideals of A, then the boundary of M with respect to \hat{A} , is equal to M^1 .

Let $\mathcal{L}(A)$ be the algebra of all bounded linear operators on A; the mapping $x \to T_x$ of A into $\mathcal{L}(A)$, where $T_x y = x y$, $y \in A$, is isomorphic and isometric (by (1.a)) onto a subalgebra \tilde{A} of $\mathcal{L}(A)$,

Let \mathscr{A} be the set of those operators $T \in \mathscr{L}(A)$ which commute with all $T_x \in \tilde{A}$, that is such that

$$(1) T(xy) = (Tx)y = x(Ty), x, y \in A.$$

LEMMA (i). For all $T \in \mathcal{A}$, we have $T = \lim T_{Tu_{\alpha}}$, the limit being considered in the strong operator topology.

- (ii) \mathscr{A} is the closure of \tilde{A} in the strong operator topology.
- (iii) $\mathscr A$ is the largest commutative subalgebra of $\mathscr L(A)$ which contains $\tilde A$.
 - (iv) \tilde{A} is an ideal in \mathscr{A} .

Proof. From (1) and (1.a), it follows that

$$T_{Tu_{\alpha}}y = Tu_{\alpha} \cdot y = T(u_{\alpha}y) \to Ty$$

for all $T \in \mathcal{A}$ and $y \in A$, hence (i) is proved. (ii) results from (i). Concerning (iii), it is enough to prove that \mathcal{A} is commutative; or, by (i) and (1)

$$T_{1}T_{2}\,x=\lim T_{T_{1}u_{lpha}}\,T_{2}\,x=T_{2}\lim \;T_{T_{1}u_{lpha}}\,x=T_{2}T_{1}\,x, \ T_{1},T_{2}\in\mathscr{N},\;x\in A.$$

If $T \in \mathscr{A}$ and $x, y \in A$, then

$$TT_xy = T(xy) = (Tx)y = T_{Tx}y$$
 ,

hence

Received March 21, 1958.

¹ For example this condition is satisfied if \mathscr{L} is regular or selfadjoint, see [3, p. 81].