CESÀRO PARTIAL SUMS OF HARMONIC SERIES EXPANSIONS

M. S. Robertson

1. Introduction. Let the harmonic function $v(r, \theta)$ have the sine series expansion

$$
\begin{equation*}
v(r, \theta)=\sum_{1}^{\infty} a_{\nu} r^{\nu} \sin \nu \theta, \tag{1.1}
\end{equation*}
$$

convergent for $0 \leqq r<1$ and suppose that $v(r, \theta)$ is non-negative for $0<\theta<\pi$. Denote the nth partial sum of (1.1) by

$$
\begin{equation*}
S_{n}^{(0)}(r, \theta)=\sum_{1}^{n} a_{\nu} r^{\nu} \sin \nu \theta \tag{1.2}
\end{equation*}
$$

and the nth Cesàro partial sum of order k, by

$$
\begin{equation*}
S_{n}^{(k)}(r, \theta)=\sum_{1}^{n} C_{k}^{n+k-\nu} a_{\nu} \nu^{\nu} \sin \nu \theta, \quad k=1,2, \cdots \tag{1.3}
\end{equation*}
$$

It was shown by Fejér [2, p. 61] and Szász [8] that when $v(r, \theta) \geqq 0$ for $0<\theta<\pi, 0<r<1$, then $S_{n}^{(0)}(r, \theta)$ is also non-negative for all n when $0<\theta<\pi, 0<r \leqq 1 / 4$, and the constant $1 / 4$ is sharp. Fejér [2] showed that the functions $S_{n}^{(3)}(1, \theta)$ are also non-negative for all n, $0<\theta<\pi$. In addition, Szász [8] showed that there exists an $R_{n}^{(0)}$, depending upon n only, so that $S_{n}^{(0)}(r, \theta) \geqq 0$ for $0<r \leqq R_{n}^{(0)}, 0 \leqq \theta \leqq \pi$, but not always for $r>R_{n}^{(0)}$, and that

$$
\begin{equation*}
R_{n}^{(0)}=1-3 \frac{\log n}{n}+\frac{\log \log n}{n}+O(1 / n) \tag{1.4}
\end{equation*}
$$

In this paper we shall extend the results of Szász to Cesàro partial sums of integral order $k, k=1,2,3$. For $k=3$ the theorem obtained is a sharpened form of the theorem of Fejér [2]. We prove the following :

Theorem 1. Let the harmonic series expansion

$$
v(r, \theta)=\sum_{1}^{\infty} a_{\nu} r^{\nu} \sin \nu \theta
$$

be convergent for $0 \leqq r<1$ and let $v(r, \theta) \geqq 0$ for $0<\theta<\pi, 0<r<1$. Then for $k=0,1,2,3$ there exists a positive number $R_{n}^{(k)}$ depending upon n only, so that

[^0]
[^0]: Received by the editors February 27, 1958, and in revised form June 3, 1958. The author wishes to express his appreciation to the referee for helpful suggestions.

