ASYMPTOTIC PERTURBATION SERIES FOR CHARACTERISTIC VALUE PROBLEMS

C. A. SWANSON

1. Introduction. Ordinary linear differential operators of the type

(1.1)
$$L = p_n \frac{d^n}{dx^n} + p_{n-1} \frac{d^{n-1}}{dx^{n-1}} + \dots + p_0$$
 $(n \ge 2)$

will be under consideration on a half-open real interval (0, b] (b > 0), designated as the *basic interval*. The coefficients $p_j = p_j(x)(j = 0, 1, \dots, n)$ are real-valued, continuous functions possessing j continuous derivatives on (0, b], and $p_n(x) \neq 0$ on (0, b]. The point x = 0 is supposed to be a singularity for L.

The basic operator over the Hilbert space $\mathscr{L}^2(0, b)$ will be obtained as a restriction of L to a domain consisting of functions which are sufficiently differentiable and which satisfy certain boundary conditions. When L coincides with its Lagrangian adjoint, conditions are known [1] under which an operator like this is self-adjoint over $\mathscr{L}^2(0, b)$. Our attention will not be focused on a self-adjoint operator, however, but on a basic operator which has at least one isolated point in its spectrum.

The investigation here concerns the spectrum of a perturbed operator. Let $[\varepsilon, b]$ denote a closed subinterval of the basic interval, where ε is a small positive number. A perturbed operator A_{ε} is a restriction of L to a domain in $\mathscr{L}^2(\varepsilon, b)$ consisting of functions which are suitably differentiable on $[\varepsilon, b]$, and which satisfy homogeneous boundary conditions at the endpoints $x = \varepsilon$ and x = b. Then a set of perturbed operators is obtained when ε varies. It will be shown that for each characteristic value Λ of the basic operator, there is a characteristic value $\lambda(\varepsilon)$ of the perturbed operator A_{ε} which converges to Λ as $\varepsilon \to 0$; and furthermore that $\lambda(\varepsilon)$ can be represented by an asymptotic expansion, valid as $\varepsilon \to 0$.

An asymptotic expansion for the characteristic function u corresponding to $\lambda(\varepsilon)$ will also be established. In particular, the asymptotic form u(x) = U(x)[1 + o(1)] will be obtained, in terms of the characteristic function U of the basic operator corresponding to Λ , valid uniformly for x contained in a certain closed subset of $[\varepsilon, b]$ as $\varepsilon \to 0$. Evidently such an asymptotic form cannot hold uniformly near the zeros of U, nor can it hold near the boundary $x = \varepsilon$ since u is forced to satisfy a boundary condition at $x = \varepsilon$. The procedure used herein permits a representation for the characteristic functions to be obtained in the "boundary layer"

Received November 5, 1958,