EIGENVALUES OF THE UNITARY PART OF A MATRIX

Alfred Horn and Robert Steinberg

1. Introduction. It is well known that every matrix A (square and with complex entries) has a polar decomposition $A=P_{1} U_{1}=U_{2} P_{2}$, where U_{i} are unitary and P_{i} are unique positive semi-definite Hermitian matrices. If A is non-singular then $U_{1}=U_{2}=U$, where U is also unique. In this case we call U the unitary part of A. The eigenvalues of P_{1} are the same as those of P_{2}.

In [2] the following problem was solved. Given the eigenvalues of P_{1}, what is the exact range of variation of the eigenvalues of A ? The answer shows that a knowledge of the eigenvalues of P_{1} puts restrictions only on the moduli of the eigenvalues of A. In this paper we are going to consider the corresponding question for the unitay part U of A. In turns out that a knowledge of the eigenvalues of U restricts only the arguments of the eigenvalues of A.

Before stating the result, we need some definitions. An ordered pair of n-tuples $\left(\lambda_{i}\right)$, (α_{i}) of complex numbers is said to be realizable if there exists a non-singular matrix A of order n with eigenvalues λ_{t} such that the unitary part of A has eigenvalues α_{i}. If $\left(\gamma_{j}\right)$ is an n-tuple of complex numbers of modulus 1, and if two of the γ_{j} are of the form $e^{i b}$, $e^{i c}$ with $0<b-c<\pi$ and $0 \leqq d \leqq(b-c) / 2$, then the operation of replacing $e^{i b}$, $e^{i c}$ by $e^{i(b-a)}, e^{i(c+d)}$ is called a pinch of $\left(\gamma_{j}\right)$. In other words, a pinch of $\left(\gamma_{j}\right)$ consists in choosing two of the γ_{j} which do not lie on the same line through 0 and turning them toward each other through equal angles.

If $\left(a_{i}\right),\left(b_{i}\right)$ are n-tuples of real numbers, and if $\left(a_{i}^{\prime}\right),\left(b_{i}^{\prime}\right)$ are their rearrangements in non-decreasing order, then we write $\left(a_{i}\right) \prec\left(b_{i}\right)$ when $\sum_{r}^{n} a_{i}^{\prime} \leqq \sum_{r}^{n} b_{i}^{\prime}, r=2, \cdots, n$ and $\sum_{1}^{n} a_{i}^{\prime}=\sum_{1}^{n} b_{i}^{\prime}$. It is easily seen that the conditions are equivalent to the conditions $\sum_{1}^{r} a_{i}^{\prime} \geqq \sum_{1}^{r} b_{i}^{\prime}, r=1, \cdots$, $n-1$, and $\sum_{1}^{n} a_{i}^{\prime}=\sum_{1}^{n} b_{i}^{\prime}$.

Our main theorem is the following.
TheOrem 1. Let $\left(\lambda_{i}\right),\left(\alpha_{i}\right)$ be n-tuples of complex numbers such that $\lambda_{i} \neq 0$ and $\left|\alpha_{i}\right|=1$. Then the following statements are equivalent:
(1) the pair $\left(\lambda_{i}\right),\left(\alpha_{i}\right)$ is realizable;
(2) $\left(\alpha_{i}\right)$ can be reduced to $\left(\lambda_{i}| | \lambda_{i} \mid\right)$ by a finite sequence of pinches;
(3) $\Pi_{1}^{n} \alpha_{i}=\Pi_{1}^{n}\left(\lambda_{i}| | \lambda_{i} \mid\right)$, and exactly one of the following hold:
(a) there is a line through 0 containing all the α_{i} and $\left(\lambda_{i} /\left|\lambda_{i}\right|\right)$ is a rearrangement of $\left(\alpha_{i}\right)$;
(b) there is no line through 0 containing all α_{i} but there is

Received September 26, 1958.

