ALMOST LOCALLY PURE ABELIAN GROUPS

D. L. BOYER AND E. A. WALKER

0. Introduction. It is the purpose of this paper to introduce and to give a preliminary investigation of almost locally pure Abelian groups [see definition 1]. For primary groups the concept of almost locally pure Abelian group coincides with that of no elements of infinite height [Theorem 9].

1. DEFINITION. A group (= Abelian group), G, is almost locally pure (hereafter abbreviated a.1.p.) if for every finite set of elements g_1, \dots, g_n of G there exists a finitely generated pure subgroup, P, of G which contains g_1, \dots, g_n .

2. EXAMPLES. Direct sums of cyclic groups are clearly a.1.p. The complete direct sum of copies of the integers is a.1.p. since by [1] every finite subset is contained in a completely decomposable direct summand and each such summand is free of finite rank.

3. REMARK. If one defines a group G to be locally pure if every finite subset generates a pure subgroup, then it is easy to see that G is a direct sum of cyclic groups of prime order, for various primes.

4. THEOREM. A direct sum of a. 1. p. groups is a.1.p.

Proof. Let $G = \sum_{\alpha} \bigoplus H_{\alpha}$, where \bigoplus denotes the weak direct sum, and where H_{α} is a.1.p. for all α . Let g_1, \dots, g_n be in G. Now let H_{β} be a summand in which some g_i has a non-zero component, and consider the components $g_{\beta_1}, \dots, g_{\beta_n}$ of g_1, \dots, g_n in H_{β} . In each such H_{β} (there are only a finite number) there exists a finitely generated pure subgroup P_{β} containing $g_{\beta_1}, \dots, g_{\beta_n}$. Then $\sum_{\beta} \bigoplus P_{\beta}$ is a finitely generated pure subgroup containing g_1, \dots, g_n .

5. THEOREM. If G is a.1.p., if K is a subgroup of G, and if for every finite set of elements g_1, \dots, g_n of G, there exists a pure subgroup, P, of G such that the group generated by K and g_1, \dots, g_n is a subgroup of P and P/K is finitely generated, then G/K is a.1.p.

If G and G/K are a.1.p., where K is pure in G, then for every finite set of elements g_1, \dots, g_n of G, there exists a pure subgroup, P, of G such that the group generated by K and g_1, \dots, g_n is a subgroup of P, and P/K is finitely generated.

Received October 20, 1958. In revised form December 4, 1958.