ON THE SIMILARITY TRANSFORMATION BETWEEN A MATRIX AND ITS TRANSPOSE

Olga Taussky and Hans Zassenhaus

It was observed by one of the authors that a matrix transforming a companion matrix into its transpose is symmetric. The following two questions arise:
I. Does there exist for every square matrix with coefficients in a field a non-singular symmetric matrix transforming it into its transpose ?
II. Under which conditions is every matrix transforming a square matrix into its transpose symmetric?

The answer is provided by
Theorem 1. For every $n \times n$ matrix $A=\left(\alpha_{i k}\right)$ with coefficients in a field F there is a non-singular symmetric matrix transforming A into its transpose A^{T}.

Theorem 2. Every non-singular matrix transforming A into its transpose is symmetric if and only if the minimal polynomial of A is equal to its characteristic polynomial i.e. if A is similar to a companion matrix.

Proof. Let $T=\left(t_{i k}\right)$ be a solution matrix of the system $\sum(A)$ of the linear homogeneous equations.

$$
\begin{equation*}
T A-A^{T} T=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
T-T^{T}=0 \tag{2}
\end{equation*}
$$

The system $\sum(A)$ is equivalent to the system

$$
\begin{equation*}
T A-A^{T} T^{T}=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
T-T^{T}=0 \tag{4}
\end{equation*}
$$

which states that T and $T A$ are symmetric. This system involves $n^{2}-n$ equations and hence is of rank $n^{2}-n$ at most. Thus there are at least n linearly independent solutions of $\Sigma(A) .{ }^{1}$

On the other hand it is well known that there is a non-singular matrix T_{0} satisfying

$$
T_{0} A T_{0}^{-1}=A^{T}
$$

Received December 18, 1958.
This part of the proof was provided by the referce. Our own argument was more lengthy.

