VARIATIONS ON A THEME OF CHEVALLEY

ROBERT STEINBERG

1. Introduction. In this paper we use the methods of C. Chevalley to construct some simple groups and to gain for them the structural theorems of [3]. Among the groups obtained there are two new families of finite simple groups¹, not to be found in the list of E. Artin [1]. Whether the infinite groups constructed are new has not been settled yet.

Section 5 contains statements of the main results of [3]. In §§ 2, 3, 4 and 7, we define analogues of certain real forms of the Lie groups of type A_i , D_i and E_6 (in the usual notation), and extend to them the structural properties of the groups of Chevalley. Sections 6 and 9 treat some identifications, and § 8 deals with the question of simplicity. In §§ 10 and 11, using the extra symmetry inherent in a Lie algebra of type D_4 , we consider two modifications of the first construction which are, perhaps, of more interest since they produce groups which have no analogue in the classical complex-real case: in fact, a basic ingredient of each of these variants is a field automorphism of order 3. In Sections 12 and 13, it is proved that new finite simple groups are obtained¹, and their orders are given. Section 14 deals with an application to the theory of group representations, and § 15 with some concluding observations.

The notation is cumulative. We denote by |S| the cardinality of the set S, by K^* the multiplicative group of the field K, and by C the complex field. An introduction to the standard Lie algebra terminology together with statements of the principal results in the classical theory can be found in [3, p. 15–19]. (Proofs are available in [8] or [10]).

2. Roots and reflections. We first introduce some notations. Relative to a Cartan decomposition of a simple complex Lie algebra of rank l, let E be the real space generated by the roots, made into an Euclidean space in the usual way, and normalized as in [3, p. 17–18]. Relative to an ordering \prec of the additive group generated by the roots, let Π be the set of positive roots, and $a(1), a(2), \dots, a(l)$ the fundamental roots. For each root $r = \Sigma z_i a(i)$, set $\Sigma z_i = ht r$, the *height* of r. The ordering \prec can always be chosen so that ht r < ht s implies r < s (see [3, p. 20, l. 35–40]); suppose this is done. Assume now the existence of an automorphism σ of E of order 2 such that $\sigma \Pi = \Pi$. This restricts the type of algebra to A_l , D_l ($l \ge 4$) or E_6 (see [3, p. 18]), and hence

Received October 2, 1958, in revised form January 8, 1959.

¹ Since the preparation of this paper, the author has learned that these groups have also been discovered by D. Hertzig [6], who has shown that they complete the list of finite simple algebraic groups.