A MINIMAL BOUNDARY FOR FUNCTION ALGEBRAS

Errett Bishop

1. Introduction. An algebra \mathfrak{A} of continuous functions on a compact Hausdorff space C will be understood to be a set of complex-valued functions on C which is closed under the operations of addition, multiplication, and multiplication by complex numbers. The algebra \mathfrak{A} is called separating if to any two distinct points of C there exists a function in \mathfrak{A} which takes distinct values at the given points. The norm $\|f\|$ of a continuous function f on a compact space is defined to be the maximum absolute value of the function. The algebra \mathfrak{A} is thus a normed algebra. \mathfrak{A} is called a Banach algebra if it is complete with respect to its norm, i.e., if the limit of every uniformly convergent sequence of elements of \mathfrak{X} is in \mathfrak{Y}.

An important theorem of Šilov (see [5], p. 80) asserts that if \mathfrak{A} is a separating algebra of continuous functions on a compact Hausdorff space C then there is a smallest closed subset S of C having the property that every function of \mathfrak{A} attains its maximum absolute value at some point of S. This set is called the Šilov boundary of \mathfrak{A}. A simple example is obtained by taking C to be a compact subset of the complex plane and \mathfrak{A} to be the set of all continuous functions on C which are analytic at interior points; in this case the Šilov boundary of \mathfrak{A} coincides with the topological boundary of C.

Given a separating normed algebra \mathfrak{H} of continuous functions on a compact space C, it seems natural to ask, in view of Šilov's theorem, whether there exists a smallest subset M (not necessarily closed) of C having the property that every function in \mathfrak{X} attains its maximum absolute value at some point of M. The answer in general is no. However, it will be shown (Theorem 1 below) that such a set M, called the minimal boundary of \mathfrak{N}, always exists if in addition it is assumed that \mathfrak{H} is a Banach algebra and that there is a countable basis for the open sets of C, i.e., that C is metrizable. An example will be given to show that the metrizability of C is necessary.

If the minimal boundary M exists, it is clear that the closure of M is the Šilov boundary. An example will be given to show that M need not be closed, so that M in general is smaller than the Šilov boundary. This raises the question of the topological structure of M, which is answered (Theorem 2) by showing that M is a G_{δ}, i.e., a countable intersection of open sets.

[^0]
[^0]: Received December 1, 1958, in revised form February 23, 1959. The author holds a Sloan Foundation Fellowship.

