CORRECTON TO "EQUIVALENCE AND PERPENDICULARITY OF GAUSSIAN PROCESSES"

J. FELDMAN

It has been kindly pointed out to me by D. Lowdenslager that, as it stands, the argument in [1] only works when $L_2(\mu)$ and $L_2(\nu)$ are separable. In particular, the theorem of von Neumann from [2], which is used there, only holds in separable Hilbert spaces. Our theorem nevertheless holds in the non-separable case; an argument will be supplied here enabling one to go from the separable to the general case. We retain notation and terminology of [1].

For any countable subset C of L, let \mathcal{S}_c be the σ -subalgebra of \mathcal{S} generated by C, L_c the linear subspace of L spanned by C, and μ_c , ν_c the restrictions of μ , ν to \mathcal{S}_c . $\bigcup_C \mathcal{S}_c$ is a σ -algebra contained in \mathcal{S} , and, since each $x \in L$ is in some L_c , each x in L is measurable with respect to $\bigcup_C \mathcal{S}_c$. Therefore $\mathcal{S} = \bigcup_C \mathcal{S}_c$. Now, suppose, under the assumptions of the theorem of [1], that μ and ν are not equivalent. Then there is some set in \mathcal{S} with μ -measure 0 and ν -measure > 0 (or vice versa). This set is in some \mathcal{S}_c . So μ_c and ν_c are not equivalent. By the separable case of the theorem, they are mutually perpendicular, i.e., there is some set in \mathcal{S}_c with μ -measure 0 and ν -measure 1. Thus μ and ν are mutually perpendicular.

Next we show that $\mu \sim \nu$ implies that the correspondence $x^{\nu} \xrightarrow{T} x^{\mu}$ between equivalence classes of functions has the property that T extends to an equivalence operator between the linear subspaces \bar{L}_{μ} and \bar{L}_{ν} of $L_{2}(\mu)$, $L_{2}(\nu)$ generated by L. Assume, then, that $\mu \sim \nu$. By using the separable case, we easily see that T and T^{-1} are bounded. An argument on p. 704 of [1] still works to show that the extension of T to an operator from \bar{L}_{μ} onto \bar{L}_{ν} still has the property that, given ξ in \bar{L}_{μ} , there is an \mathscr{S} -measurable x such that $x^{\mu} = \xi$ and $x^{\nu} = T\xi$. Write $T^{*}T$ as $\int \lambda d F(\lambda)$. Let $E_{n} = F\left(1 + \frac{1}{n}\right) - F\left(1 - \frac{1}{n}\right)$, n = 2, 3, 4, \cdots Let $E = \bigcap_{n} E_{n}$. I now assert $(I - E)\bar{L}_{\mu}$ is separable. For otherwise $(I - E_{n})\bar{L}_{\mu}$ would be inseparable for some n, and one could therefore find a countable orthonormal infinite set ξ_{1} , ξ_{2} , \cdots of elements of \bar{L}_{μ} for which $||(T^{*}T - I)\xi_{i}|| \geq \frac{1}{n}||\xi_{i}||$, all i. Let H be the Hilbert space spanned by the ξ_{i} . Let \tilde{L} be the set of μ -measurable functions x on S such that $x^{\mu} \in H$. Let $\tilde{\mathscr{S}}$ be the σ -algebra spanned by them. Let $\tilde{\mu}$, $\tilde{\nu}$ be the completions of μ and ν , restricted to $\tilde{\mathscr{S}}$. Then the Hilbert spaces \tilde{L}_{μ} , \tilde{L}_{ν} are isometric to H and T(H),