TESTS FOR PRIMALITY BASED ON SYLVESTERS CYCLOTOMIC NUMBERS

Morgan Ward

Introduction. Lucas, Carmichael [1] and others have given tests for primality of the Fermat and Mersenne numbers which utilize divisibility properties of the Lucas sequences (U) and (V); in this paper we are concerned only with the first sequence;

$$
(U): U_{0}, \quad U_{1}, U_{2}, \cdots, U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \cdots
$$

Here α and β are the roots of a suitably chosen quadratic polynomial $x^{2}-P x+Q$, with P and Q coprime integers. (For an account of these tests, generalizations and references to the early literature, see Lehmer's Thesis [2]).

I develop here a test for primality of a less restrictive nature which utilizes a divisibility property of the Sylvester cyclotomic sequence [3]:

$$
(Q): Q_{0}=0, Q_{1}=1, Q_{2}, \cdots, Q_{n}=\prod_{\substack{1 \leq r \leq n \\(r, n)=1}}\left(\alpha-e^{\frac{2 \pi i r}{n}} \beta\right), \cdots
$$

Here α and β have the same meaning as before. (U) and (Q) are closely connected [4]; in fact

$$
\begin{equation*}
U_{n}=\prod_{d \mid n} Q_{d} \tag{1.1}
\end{equation*}
$$

The divisibility property is expressed by the following theorem proved in § 3 of this paper.

Theorem. If m is an odd number dividing some cyclotomic number Q_{n} whose index n is prime to m, then every divisor of m greater than one has the same rank of apparition n in the Lucas sequence (U) connected with (Q).

Here the rank of apparition or rank, of any number d in (U) means as usual the least positive index x such that $U_{x} \equiv 0(\bmod d)$.

The following primality test is an immediate corollary.

Primality test. If m is odd, greater than two, and divides some cyclotomic number Q_{n} whose index n is both prime to m and greater than the square root of m, then m is a prime number except in two trivial cases: $m=(n-1)^{2}, n-1$ a prime greater than 3 , or $m=n^{2}-1$ with $n-1$ and $n+1$ both primes.

[^0]
[^0]: Received January 14, 1959.

