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l Introduction* Throughout this paper, 36 is a Banach space, T
a bounded spectral operator on 96 with scalar part S, nilpotent part N,
and resolution of the identity E(σ) for σ a Borel set in the complex
plane. M is the bound for the norms of the E(σ); \E(σ)\ < M for all
Borel sets σ. The resolvent function for T, (λ — T)~\ is denoted by
R(X, T). The operator R(X, T)E(σ) has an unique analytic extension
from the resolvent set of T to the complement of σ, and on the sub-
space E(σ)% it is equal to the operator R(X, Tσ) where Tσ is the re-
striction of T to E{σ)H. For material on spectral operators, we refer
to the papers on N. Dunford [1], [2], χσ(ξ) is the characteristic function
of the Borel set σ: χσ{ξ) = 1 if ξ e σ, χσ(ξ) = 0 if ξ 0 σ. For p a non-
negative real number, μp is Hausdorff p-dimensional measure [3, pp. 102
#.]; μ2 is Lebesgue planar measure multiplied by π/4, and μλ restricted
to an arc is majorized by arc length.

We assume throughout that there is an integer m for which the
resolvent function for T satisfies the mth order rate of growth condition

\R(\, T)E(σ)\ <K* d(\,σ)-m,X $ σ, \X\ < \ T\ + ' 1 ,

where d(X, σ) is the distance from λ to a and K is a constant inde-
pendent of σ. If X is Hubert space, it is known that this growth
condition implies Nm = 0 [1, p. 337]. In an arbitrary Banach space,
this is no longer true; the best that can be done is Nm+2 = 0. If ϊ is
weakly complete, iVm+1 — 0; or if a is a set of μ2 measure zero, Nm+1E(σ) = 0.
If a lies in an arc and either X is weakly complete or a has μx measure
zero, then NmE(σ) = 0. Examples show that we cannot obtain lower
indices of nilpotency in general.

2 The fundamental lemma and some easy consequences. If f(ξ) is

a bounded, scalar valued Borel function, the operator \ f(ξ)E(dξ) exists

as a bounded operator with norm at most 4Af sup ε | /( | ) | [1, p. 341], so
that uniform convergence of a sequence of bounded Borel functions fn{ξ)
implies convergence in the uniform operator topology of the operators
\ fn(t)E(dξ). Thus for a given bounded Borel function f(ξ) and a given

positive number η, there exist a finite number of disjoint Borel sets σi

and points ξt e σt such that
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