TRANSFORMATIONS ON TENSOR PRODUCT SPACES

Marvin Marcus and B. N. Moyls

1. Introduction. Let U and V be m - and n-dimensional vector spaces over an algebraically closed field F of characteristic 0 . Then $U \otimes V$, the tensor product of U and V, is the dual space of the space of all bilinear functionals mapping the cartesian product of U and V into F. If $x \in U, y \in V$ and w is a bilinear functional, then $x \otimes y$ is defined by: $x \otimes y(w)=w(x, y)$. If e_{1}, \cdots, e_{m} and f_{1}, \cdots, f_{n} are bases for U and V, respectively, then the $e_{i} \otimes f_{j}, i=1, \cdots, m, j=1, \cdots, n$, form a basis for $U \otimes V$.

Let $M_{m, n}$ denote the vector space of $m \times n$ matrices over F. Then $U \otimes V$ is isomorphic to $M_{m, n}$ under the mapping ψ where $\psi\left(e_{i} \otimes f_{j}\right)=$ $E_{i j}$, and $E_{i j}$ is the matrix with 1 in the (i, j) position and 0 elsewhere. An element $z \in U \otimes V$ is said to be of rank k if $z=\sum_{i=1}^{k} x_{i} \otimes y_{i}$, where x_{1}, \cdots, x_{k} are linearly independent and so are y_{1}, \cdots, y_{k}. If $R_{k}=$ $\{z \in U \otimes V \mid \operatorname{rank}(z)=k\}$, then $\psi\left(R_{k}\right)$ is the set of matrices of rank k, in $M_{m, n}$. In view of the isomorphism any linear map T of $U \otimes V$ into itself can be considered as a linear map of $M_{m, n}$ into itself.

In [2] and [3], Hua and Jacob obtained the structure of any mapping T that preserves the rank of every matrix in $M_{m, n}$ and whose inverse exists and has this property (coherence invariance). (In [3] F is replaced by a division ring, and T is shown to be semi-linear by appealing to the fundamental theorem of projective geometry.) In [4] we obtained the structure of T when $m=n, T$ is linear and T preserves rank 1, 2 and n. Specifically, there exist non-singular matrices M and N such that $T(A)=M A N$ for all $A \in M_{n n}$, or $T(A)=M A^{\prime} N$ for all A, where A^{\prime} designates the transpose of A. Frobenius (cf. [1], p. 249) obtained this result when T is a a linear map which preserves the determinant of every A. In [5] it was shown that this result can be obtained by requiring only that T be linear and preserve rank n. In the present paper we show that rank 1 suffices (Theorem 1), or rank 2 with the side condition that T maps no matrix of rank 4 or less into 0 (Theorem 2). Thus our hypothesis will be that T is linear and $T\left(R_{1}\right) \subseteq R_{1}$. We remark that T may be singular and still its kernel may have a zero intersection with R_{1}; e.g., take $U=V$ and $T(x \otimes y)=$ $x \otimes y+y \otimes x$.
2. Rank one preservers. Throughout this section T will be a linear transformation (l.t.) of $U \otimes V$ into $U \otimes V$ such that $T\left(R_{1}\right) \subseteq R_{1}$. Here

[^0]
[^0]: Received March 2, 1959. The work of the first author was sponsored by U.S. National Science Foundation Grant G. 5416.

