COINCIDENCE PROPERTIES OF BIRTH AND DEATH PROCESSES

Samuel Karlin and James McGregor

A birth and death process (for brevity referred to henceforth as process B) is a stationary Markov process whose state space is the nonnegative integers and whose transition probability matrix

$$
\begin{equation*}
P_{i j}(t)=\operatorname{Pr}\{x(t)=j \mid x(0)=i\} \tag{1}
\end{equation*}
$$

satisfies the conditions (as $t \rightarrow 0$)

$$
P_{i j}(t)= \begin{cases}\lambda_{i} t+o(t) & \text { if } j=i+1 \tag{2}\\ \mu_{i} t+o(t) & \text { if } j=i-1 \\ 1-\left(\lambda_{i}+\mu_{i}\right) t+o(t) & \text { if } j=i\end{cases}
$$

where $\lambda_{i}>0$ for $i \geq 0, \mu_{i}>0$ for $i \geq 1$ and $\mu_{0} \geq 0$. We further assume that $P_{i, j}(t)$ satisfies the foward and backward equation in the usual form. In this paper we restrict attention to the case $\mu_{0}=0$ so that when the particle enters the state zero it remains there a random length of time according to an exponential distribution with parameter λ_{0} and then moves into state one etc.

In order to avoid inessential difficulties we assume henceforth that the infinitesimal birth and death rates λ_{i} and μ_{i} uniquely determine the process. This is equivalent to the condition $\sum_{n=0}^{\infty}\left(\pi_{n}+1 / \lambda_{n} \pi_{n}\right)=\infty$ where

$$
\begin{equation*}
\pi_{0}=1 \text { and } \pi_{n}=\frac{\lambda_{0} \lambda_{1} \lambda_{2} \cdots \lambda_{n-1}}{\mu_{1} \mu_{2} \mu_{3} \cdots \mu_{n}} \tag{2}
\end{equation*}
$$

In the companion paper we show that for all $t>0$

$$
\operatorname{det}\left(P_{i_{\mu}, j_{\nu}}(t)\right)=P\left(t ; \begin{array}{l}
i_{1}, i_{2}, \cdots, i_{n} \tag{3}\\
j_{1}, j_{2}, \cdots, j_{n}
\end{array}\right) \quad \begin{aligned}
& i_{1}<i_{2}<i_{3}<\cdots<i_{n} \\
& j_{1}<j_{2}<j_{3}<\cdots<j_{n}
\end{aligned}
$$

has the following interpretation: Start n labled particles at time zero in states $i_{1}, i_{2}, \cdots, i_{n}$ respectively, each governed by the transition law (1) and acting independently. The determinant (3) is equal to the probability that at time t particle 1 is located in state j_{1}, particle 2 is located in state j_{2} etc., without any two of these particles having occupied simultaneously a common state at some earlier time $\tau<t$. We refer to this event as a transition in time t of n particles from initial states

[^0]
[^0]: Received December 18, 1958. This work was supported in part by an Office of Naval Research Contract at Stanford University.

