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Introduction, The study of probability theory in abstract spaces
became possible with the introduction of integration theories in such
spaces. Thus the idea of the expectation of a random variable which
takes its value in a Banach space was studied by Frechet [6] with what
amounted to the Bochner integral, and by Mourier [13] with the Pettis
integral. Doss [2] studied the problem in a metric space. Kolmogorov
[10] generalized the notion of characteristic function. Generalizations
of the laws of large numbers and the ergodic theorem appear in Mourier
[13] and Fortet-Mourier [5]. In this paper we generalize the concept
of martingale and prove various convergence theorems.

Chapter I is devoted to listing various definitions and theorems which
we shall have to refer to later. In Chapter II we introduce the idea
of the conditional expectation of a Banach space valued random variable.
We also prove the existence of the strong conditional expectation for
strongly measurable random variables. This part of our work was also
done by Moy [14] independently, and without the knowledge of the
author. Chapter III is devoted to the definition and study of weak and
strong ϊ-martingales, with emphasis on the latter.

In Chapter IV we prove a series of convergence theorems for 36-
Martingales with the help of theorems of Doob [1]. The main theorem
says that if {xn, Ĵ Γ, n ^ 1} is an X-Martingale where 36 is a reflexive
Banach space, and if {|| xn\\, n ^ 1} is a uniformly integrable class of
functions, then there is a strongly measurable X-valued function x^ such
that || xn{ω) — x^ω) || —> 0 as n—>oo with probability 1 and {xnJ ^, 1 <Ξ
n ^ oo} is an ϊ-martingale. We close by discussing examples where 36
is one of the standard Banach spaces, lp, LP(I), and C(I).

CHAPTER I.

PRELIMINARY DEFINITIONS

1* Measurability concepts. A. Let {Ω, P, ^) be a probability
space. Thus Ω is an abstract set of points ω, ^ is a Borel field of
subsets of Ω, and P is a probability measure defined on ^ . We recall
that a Borel field of sets is a class of sets which is closed under count-
able unions and intersections, and complementation. A probability
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