OPERATIONAL CALCULUS OF LINEAR RELATIONS

Richard Arens

1. Introduction. Let X and Y be linear spaces, and T a linear subspace of $X \oplus Y$. We call T a linear relation to indicate our interest in those constructions with T which generalize those carried out when T is single-valued [4].

Properly many-valued linear relations arise naturally from operators T when T^{-1} or T^{*} is contemplated in cases where they are not singlevalued. One advantage of not dismissing T^{*} when it is not singlevalued is that $T^{* *}=T$ if and only if T is closed (for the details, see 3.34, below.) A more superficial attraction is that linear relations, even self-adjoint linear relations in Hilbert space can exhibit phenomena (unbounded spectrum, domain $\neq X$) in finite-dimensional spaces which linear operators exhibit only in infinite-dimensional spaces.

We present an outline of the paper. In § 2 we define $p(T)$ where p is a polynomial with coefficients in the field Φ involved in X. We prove that $(p q)(T)=p(T) q(T),(p \circ q)(T)=p(q(T))$, and point out that sometimes $(p+q)(T) \neq p(T)+q(T)$, etc.

In § 3 we turn to relations in dual pairs. In this situation, adjoints can be defined. We build an automorphism $\lambda \rightarrow \bar{\lambda}$ of Φ into the theory of dual pairs, so as not to exclude the Hilbert space situation, which dual pairs are intended to imitate. (Thus the transpose is a special kind of adjoint.) Closedness is defined algebraically, but in a way compatible with the topological concept. Closure of T^{*} and other algebraic properties of * are established. Finally, it is shown that if T is closed and its resolvent is not void then $p(T)$ is also closed.

Section 4 considers the self-dual case. We give a simple condition (4.3) always true in Hilbert space, that $T^{*} T$ be self-adjoint, T being closed. In §5 we give the spectral analysis of self-adjoint linear relations in Hilbert space. In a 1:1 manner these correspond to the unitary operators, via the Cayley transform. However, it can be shown directly that X is the direct sum of orthogonal subspaces Y, Z which reduce $T\left(=T^{*}\right)$ giving in Z a self-adjoint operator and in Y the inverse of the zero-operator.
2. Linear relations. A relation T between members of a set X and members of a set Y is merely a subset of $X \times Y$. For $x \in X, T(x)=$ $\{y:(x, y) \in T\}$. The domain of T consists of those x such that $T(x)$ is not void. T is called single-valued if $T(x)$ never contains more than one element. The range of T is the union of all $T(x)$.

[^0]
[^0]: Received April 13, 1960.

