ON CERTAIN NON-LINEAR OPERATORS AND PARTIAL DIFFERENTIAL EQUATIONS

Gertrude I. Heller

1. Introduction and summary. Consider a partial differential equation

$$
\begin{equation*}
\Phi\left(\frac{\partial^{k} u}{\partial t^{k}}, \frac{\partial^{k} u}{\partial t^{k-1} \partial y}, \cdots, u, y, t\right)=0 \tag{1.1}
\end{equation*}
$$

with boundary conditions of the type

$$
\begin{array}{ll}
\left.\frac{\partial^{2 i} u}{\partial y^{2 i}}\right|_{y=0}=\left.\frac{\partial^{2 i} u}{\partial y^{2 i}}\right|_{y=\pi}=0 & (i=0,1, \cdots, j) ; \tag{1.2}\\
\left.\frac{\partial^{i} u}{\partial t^{i}}\right|_{t=0}=f_{i}(y), & (i=0,1, \cdots, k)
\end{array}
$$

By means of a Fourier sine-series expansion with respect to one of the independent variables, say y,

$$
\begin{align*}
& u(y, t)=\sum_{n=1}^{\infty} X_{n}(t) \sin (n y) \\
& X_{n}(t)=\frac{2}{\pi} \int_{0}^{\pi} u(y, t) \sin (n y) d y \tag{1.3}
\end{align*}
$$

there corresponds to the system (1.1), (1.2) an infinite system of ordinary differential equations in the X_{n} 's

$$
\begin{equation*}
\Phi_{n}\left(t, X_{1}(t), \frac{d X_{1}}{d t}, \cdots, \frac{d^{k} X_{1}}{d t^{k}}, X_{2}(t), \cdots\right)=0 \tag{1.4}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
\left.\frac{d^{i} X_{n}}{d t^{i}}\right|_{t=0}=\frac{2}{\pi} \int_{0}^{\pi} f(y) \sin (n y) d y \tag{1.5}
\end{equation*}
$$

where

$$
\begin{align*}
& \Phi_{n}\left(t, s_{1}^{0}, s_{1}^{1}, \cdots, s_{1}^{k}, s_{2}^{0}, \cdots\right)=\frac{2}{\pi} \int_{0}^{\pi} \Phi\left(\sum_{i=1}^{\infty} s_{i}^{k} \sin (i y)\right. \tag{1.6}\\
&\left.\sum_{i=1}^{\infty} i s_{i}^{k-1} \cos (i y), \cdots, \sum_{i=1}^{\infty} s_{i}^{0} \sin (i y), y, t\right) \sin (n y) d y
\end{align*}
$$

Disregarding for the moment all questions of convergence of the series and permissibility of term by term differentiation and integration, the two systems (1.1), (1.2) and (1.4), (1.5) are equivalent; so that a

[^0]
[^0]: Received March 23, 1959, and in revised form May 11, 1960.

