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1. Introduction. The contents of this paper arose from work done
in developing an algorithm for finding all vertices of convex polyhedral
sets defined by systems of linear inequalities [1]. The following natural
questions were raised: if we consider the vertices of convex polyhedral
sets as the points, and the edges as the lines of a graph, does there
exist a path or a cycle which goes through all points exactly once (i.e.,
does there exist a Hamiltonian path or cycle)? The answer to both
questions is negative: there exists, in general, no Hamiltonian path or
cycle. A simple example of a convex polyhedral set in 3-space whose
graph contains no Hamiltonian path (and hence no Hamiltonian cycle)
has recently been devised by T. A. Brown [2]. The classic example of
Tutte [7] shows only that no Hamiltonian cycle exists.

In this paper, however, we show that such graphs do have the
general property of being w-tuply connected. According to Whitney's
Theorem [8] this implies that there exist n disjoint paths between any
pair of vertices. We give a new proof of this fact based on an applica-
tion of the Max-Flow Min-Cut Theorem [3], [5], Finally, we point out
that all proofs are based on the theory of linear programming, and thus
on theory which itself rests on the properties of convex polyhedral sets.

2. The result* A graph G{n,A) is defined to be a finite collection
of points 7Z together with a collection of lines A. The lines consist of
pairs of distinct points and A is thus some given subset of the collection
of all possible lines formed from points in n. A line (pu p2) is said to
be incident to each of the points px and p2. A point is said to have
degree n if n lines are incident to it. A path is a collection of lines
(Pi, P2), (p2, Pz), • • •, (Pi, PJC+I) with Pi =£ p3 j = i + 1, and k ^ 1. Paths are
.said to be disjoint if they have no points except possibly first and last
points in common. A cycle is a path with k ^ 2 whose first and last
points are the same. We say a graph G is connected if there exists a
path between any two of its points. We define an n-tuply connected
graph G to be a graph with at least n + 1 points and such that it is
impossible to disconnect it by dropping out n — 1 or fewer points.

Consider the polyhedral convex set S in w-space described by the
system of linear inequalities
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