ON THE GRAPH STRUCTURE OF CONVEX POLYHEDRA IN n-SPACE

M. L. Balinski

1. Introduction. The contents of this paper arose from work done in developing an algorithm for finding all vertices of convex polyhedral sets defined by systems of linear inequalities [1]. The following natural questions were raised: if we consider the vertices of convex polyhedral sets as the points, and the edges as the lines of a graph, does there exist a path or a cycle which goes through all points exactly once (i.e., does there exist a Hamiltonian path or cycle)? The answer to both questions is negative: there exists, in general, no Hamiltonian path or cycle. A simple example of a convex polyhedral set in 3-space whose graph contains no Hamiltonian path (and hence no Hamiltonian cycle) has recently been devised by T. A. Brown [2]. The classic example of Tutte [7] shows only that no Hamiltonian cycle exists.

In this paper, however, we show that such graphs do have the general property of being n-tuply connected. According to Whitney's Theorem [8] this implies that there exist n disjoint paths between any pair of vertices. We give a new proof of this fact based on an application of the Max-Flow Min-Cut Theorem [3], [5]. Finally, we point out that all proofs are based on the theory of linear programming, and thus on theory which itself rests on the properties of convex polyhedral sets.
2. The result. A graph $G(\pi, \Delta)$ is defined to be a finite collection of points π together with a collection of lines Δ. The lines consist of pairs of distinct points and Δ is thus some given subset of the collection of all possible lines formed from points in π. A line (p_{1}, p_{2}) is said to be incident to each of the points p_{1} and p_{2}. A point is said to have degree n if n lines are incident to it. A path is a collection of lines $\left(p_{1}, p_{2}\right),\left(p_{2}, p_{3}\right), \cdots,\left(p_{k}, p_{k+1}\right)$ with $p_{i} \neq p_{j} j=i+1$, and $k \geqq 1$. Paths are said to be disjoint if they have no points except possibly first and last points in common. A cycle is a path with $k \geqq 2$ whose first and last points are the same. We say a graph G is connected if there exists a path between any two of its points. We define an n-tuply connected graph G to be a graph with at least $n+1$ points and such that it is impossible to disconnect it by dropping out $n-1$ or fewer points.

Consider the polyhedral convex set S in n-space described by the system of linear inequalities

[^0]
[^0]: Received June 13, 1960. This work was supported, in part, by the Office of Naval Research Logistics Project, Contract Nonr 1858-(21), Department of Mathematics, Princeton University.

