THE SECOND CONJUGATE SPACE OF A BANACH ALGEBRA AS AN ALGEBRA

PAUL CIVIN AND BERTRAM YOOD

1. Introducion. A procedure has been given by Arens [1, 2] for defining a multiplication in the second conjugate space of a Banach algebra which makes that space into another Banach algebra. This idea was used with great effectiveness by Day [3] in his study of amenable semigroups.

We undertake here a rather systematic study of this notion. We begin in § 3 with a discussion of the second conjugate space $L^{**}(\mathbb{S})$ of the group algebra $L(\mathfrak{G})$ of a locally compact group \mathfrak{G} and its radical \mathfrak{R}^{**} . Suppose that \mathfrak{G} is abelian and infinite. It is shown that $L^{**}(\mathfrak{G})$ is never semi-simple and never commutative; if \mathfrak{G} is compact then \mathfrak{R}^{**} is the annihilator in $L^{**}(\mathbb{S})$ of that subset of the first conjugate space $L^{*}(\mathbb{S})$ which can be identified with the continuous functions on \mathfrak{G} . For any locally compact abelian group \mathfrak{G} let \mathfrak{Y} be the subspace of $L^*(\mathfrak{G})$ that may be identified with the almost periodic functions on (3), and let (5) be the subspace of $L^*(\mathbb{S})$ that may be identified with the continuous functions on \mathfrak{G} vanishing at infinity. Let \mathfrak{Y}^{\perp} and \mathfrak{C}^{\perp} denote respectively the annihilators of \mathfrak{Y} and \mathfrak{C} in $L^{**}(\mathfrak{G})$. Then $L^{**}(\mathfrak{G})/\mathfrak{Y}^{\perp}$ is isometrically isomorphic as a Banach algebra to the measure algebra on the almost periodic compactification of \mathfrak{G} , and $L^{**}(\mathfrak{G})/\mathfrak{C}^{\perp}$ is isometrically isomorphic to the measure algebra on \mathcal{G} . It is then abundently clear that the Arens multiplication in $L^{**}(\mathbb{G})$ is intimately connected with much studied objects defined in terms of ^(S).

In §4 we observe a phenomenon which does not hold in the group algebra case. In the latter case we started with a commutative, semisimple Banach algebra $B = L(\Im)$ and obtained a second conjugate space B^{**} neither commutative nor semi-simple. Here we give of an example where B is commutative and semi-simple and B^{**} is not semi-simple but commutative.

We can consider B as embedded in B^{**} in the canonical way. In §5 it is shown, for example, that each regular maximal (left, right or two-sided) and each primitive ideal is contained in an ideal of the same type in B^{**} . Also if B is commutative its radical is contained in the radical of B^{**} .

In §6 it is shown that if T is a continuous homomorphism of B_1 into B_2 , where B_k is a Banach algebra, then T^{**} is continuous homomorphism of B_1^{**} into B_2^{**} where these are considered as algebras.

Received August 10, 1960. This research was supported by the National Science Foundation, Grant NSF-G-5865.