A NOTE ON GENERALIZATIONS OF SHANNON-MCMILLAN THEOREM

Shu-Teh C. Moy

1. Introduction. This paper is a sequel to an earlier paper [6]. All notations in [6] remain in force. As in [6] we shall consider tw probability measures μ , ν an the infinite product σ -algebra of subsets of the infinite product space $\Omega = \pi X$. ν is assumed to be stationary and μ to be Markovian with stationary transition probabilities. Extensions to K-Markovian μ are immediate. $\nu_{m.n}$, the contraction of ν to $\mathscr{T}_{m.n}$, is assumed to be absolutely continuous with respect to $\mu_{m.n}$, the contraction of μ to $\mathscr{T}_{m.n}$, and $f_{m.n}$ is the Radon-Nikodym derivative. In [6] the following theorem is proved. If $\int \log f_{0,0} d\nu < \infty$ and if there is a number M such that

(1)
$$\int (\log f_{0,n} - \log f_{0,n-1}) d\nu \leq M ext{ for } n = 1, 2, \cdots$$

then $\{n^{-1}\log f_{0,n}\}$ converges in $L_1(\nu)$. (1) is also a necessary condition for the $L_1(\nu)$ convergence of $\{n^{-1}\log f_{0,n}\}$. We consider this theorem as a generalization of the Shannon-McMillan theorem of information theory. In the setting of [6] the Shannon-McMillan theorem may be stated as follows. Let X be a finite set of K points. Let ν be any stationary probability measure of \mathscr{F} , and μ the equally distributed independent measure on \mathscr{F} . Then $\{n^{-1}\log f_{0,n}\}$ converges in $L_1(\nu)$. In fact, the $P(x_0, x_1, \dots, x_n)$ of Shannon-McMillan is equal to $K^{(n+1)}f_{0,n}$. The convergence with probability one of $\{n^{-1}\log P(x_0, \dots, x_n)\}$ for a finite set X was proved by L. Breiman [1] [2]. K.L. Chung then extended Breiman's result to a countable set X. [3]. In this paper we shall prove that the convergence with ν -probability one of $\{n^{-1}\log f_{0,n}\}$ follows from the following condition.

(2)
$$\int \frac{f_{0,n}}{f_{0,n-1}} d\nu \leq L, n = 1, 2, \cdots$$

(2) is a stronger condition than (1) since by Jensen's inequality

$$\mathrm{log} {\int} rac{{{f_{{_{0,n}}}}}}{{{f_{{_{0,n-1}}}}}} d
u \geqq {\int} \mathrm{log} rac{{{f_{{_{0,n}}}}}}{{{f_{{_{0,n-1}}}}}} d
u$$
 .

An application to the case of countable X is also discussed.

Received November 28, 1960.