GROUPS WHICH HAVE A FAITHFUL REPRESENTATION OF DEGREE LESS THAN ($p-1 / 2$)

Walter Feit and John G. Thompson

1. Introduction. Let G be a finite group which has a faithful representation over the complex numbers of degree n. H. F. Blichfeldt has shown that if p is a prime such that $p>(2 n+1)(n-1)$, then the Sylow p-group of G is an abelian normal subgroup of G [1]. The purpose of this paper is to prove the following refinement of Blichfeldt's result.

Theorem 1. Let p be a prime. If the finite group G has a faithful representation of degree n over the complex numbers and if $p>2 n+1$, then the Sylow p-subgroup of G is an abelian normal subgroup of G.

Using the powerful methods of the theory of modular characters which he developed, R. Brauer was able to prove Theorem 1 in case p^{2} does not divide the order of G [2]. In case G is a solvable group, N. Ito proved Theorem 1 [4]. We will use these results in our proof.

Since the group $S L(2, p)$ has a representation of degree $n=(p-1) / 2$, the inequality in Theorem 1 is the best possible.

It is easily seen that the following result is equivalent to Theorem 1.
Theorem 2. Let A, B be n by n matrices over the complex numbers. If $A^{r}=I=B^{s}$, where every prime divisor of $r s$ is strictly greater than $2 n+1$, then either $A B=B A$ or the group generated by A and B is infinite.

For any subset S of a group $G, C_{G}(S), N_{G}(S),|S|$ will mean respectively the centralizer, normalizer and number of elements in S. For any complex valued functions ζ, ξ on G we define

$$
(\zeta, \xi)_{G}=\frac{1}{|G|} \sum_{\sigma} \zeta(x) \overline{\xi(x)}
$$

and $\|\zeta\|_{G}^{2}=(\zeta, \zeta)_{G}$. Whenever it is clear from the context which group is involved, the subscript G will be omitted. $H \triangleleft G$ will mean that H is a normal subgroup of G. For any two subsets A, B of $G, A-B$ will denote the set of all elements in A which are not in B. If a subgroup of a group is the kernel of a representation, then we will also say that it is the kernel of the character of the given representation. All groups

[^0]
[^0]: Received November 25, 1960. The first author was partly supported by O. O. R. and an NSF Grant. The second author was partly supported by the Esso Research Foundation.

