EIGENVALUES OF SUMS OF HERMITIAN MATRICES

ALFRED HORN

Let $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$ be arbitrary nonincreasing sequences of real numbers. We consider the question: for which nonincreasing sequences $\gamma = (\gamma_1, \dots, \gamma_n)$ do there exist Hermitian matrices A and B such that A, B and A + B have α, β and γ respectively as their sequences of eigenvalues. Necessary conditions have been obtained by several authors including Weyl [4], Lidskii [3], Wielandt [5], and Amir-Moez [1]. Besides the obvious condition

(1)
$$\gamma_1 + \cdots + \gamma_n = \alpha_1 + \cdots + \alpha_n + \beta_1 + \cdots + \beta_n$$
,

these conditions are linear inequalities of the form

$$(2) \qquad \gamma_{k_1} + \cdots + \gamma_{k_r} \leq \alpha_{i_1} + \cdots + \alpha_{i_r} + \beta_{j_1} + \cdots + \beta_{j_r},$$

where i, j and k are increasing sequences of integers. As far as I know all other known necessary conditions are consequences of these inequalities. It is therefore natural to conjecture that the set E of all possible γ forms a convex subset of the hyperplane (1). The set E has hitherto not been determined except in the simple cases n = 1, 2, and will not be determined in general here.

In §2, which is independent of §1, we are going to give a method of finding conditions of the form (2) which will yield many new ones. We shall find all possible inequalities (2) for r = 1, 2, and arbitrary n, and establish a large class of such inequalities for r = 3. In §1, we use Lidskii's method to find a necessary condition on the boundary points of a subset E' of E. These results are used in §3 to determine the set E for n = 3, 4. In addition a conjecture is given for E in general.

If x is a sequence, x_p denotes the pth component of x. If A is a matrix, A^* and A' denote the conjugate transpose and transpose of A. If i is a sequence of integers such that $1 \leq i_1 < \cdots < i_r \leq n$, by the complement of i with respect to n we mean the sequence obtained by deleting the terms of i from the sequence $1, 2, \cdots, n$. If α is a sequence of numbers, diag $(\alpha_1, \cdots, \alpha_n)$ denotes the diagonal matrix with diagonal α . If M and N are matrices, diag (M, N) denotes the direct sum matrix

$$egin{pmatrix} M & 0 \ 0 & N \end{pmatrix}.$$

The inner product of the vectors x and y is written (x, y). I_r is the

Received January 16, 1961. Part of this research was supported by a National Science Foundation grant.