ON THE NUMBER OF PURE SUBGROUPS

Paul Hill

A problem due to Fuchs [3] is to determine the cardinality of the set \mathscr{P} of all pure subgroups of an abelian group. Boyer has already given a solution for nondenumerable groups G [1]; he showed that $|\mathscr{P}|=2^{|q|}$ if $|G|>\boldsymbol{K}_{0}$, where $|A|$ denotes the cardinality of a set A. Our purpose is to complement the results of [1] by determining those groups for which $|\mathscr{P}|$ is finite, \boldsymbol{K}_{0}, and $c=2^{\aleph_{0}}$. In the following, group will mean abelian group.

Lemma 1. If G is a torsion group with $|G| \leqq \boldsymbol{K}_{0}$, then $\left|\mathscr{P}^{\prime}\right|=c$ unless

$$
\begin{equation*}
G=p_{1}^{\infty} \oplus p_{2}^{\infty} \oplus \cdots \oplus p_{n}^{\infty} \oplus B \tag{1}
\end{equation*}
$$

a direct sum of (at most) a finite number of groups of type p^{∞} and a finite group, where $p_{i} \neq p_{j}$ if $i \neq j$. If G is of the form (1), then $|\mathscr{P}|$ is finite.

Proof. The latter statements is clear, and if none of the following hold
(i) G decomposes into an infinite number of summands
(ii) G contains $p^{\infty} \bigoplus p^{\infty}$ for some prime p
(iii) $|B|=\aleph_{0}$, where B is the reduced part of G,
then G is of the form (1). Moreover, if (i) holds, then obviously $|\mathscr{P}|=$ c. Every automorphism of p^{∞} determines a pure subgroup of $p^{\infty} \oplus p^{\infty}$, and distinct automorphisms correspond to distinct subgroups. Since $\mid A\left(p^{\infty}\right)=$ automorphism group $\mid=c$, it follows that $p^{\infty} \oplus p^{\infty}$ has c pure subgroups. Thus if (ii) holds, $|\mathscr{P}|=c$ since $p^{\infty} \oplus p^{\infty}$ is a direct summand of G. Finally, if (iii) holds and if (i) does not, then the following argument shows that $|\mathscr{P}|=c$. We may write ${ }^{1} \quad B=C_{1} \oplus B_{1}=$ $C_{1} \oplus C_{2} \oplus B_{2}$, and continuing in this way define an infinite sequence C_{n} of cyclic groups such that no C_{i} is contained in the direct sum of any of the others. The direct sum of any subcollection of these cyclic groups is a pure subgroup of B and, therefore, of G.

An interesting corollary is noted: there is no torsion group with exactly \aleph_{0} pure subgroups.

Lemma 2. If $G=F \oplus B$ is the direct sum of a torsion free group

[^0]
[^0]: Received January 31, 1961. This research was supported by the National Science Foundation.
 ${ }^{1}$ This is precisely the proof of Boyer that such a group has c subgroups [2].

