ON THE NUMBER OF PURE SUBGROUPS

PAUL HILL

A problem due to Fuchs [3] is to determine the cardinality of the set \mathscr{P} of all pure subgroups of an abelian group. Boyer has already given a solution for nondenumerable groups G [1]; he showed that $|\mathscr{P}| = 2^{|\mathcal{G}|}$ if $|\mathcal{G}| > \aleph_0$, where $|\mathcal{A}|$ denotes the cardinality of a set \mathcal{A} . Our purpose is to complement the results of [1] by determining those groups for which $|\mathscr{P}|$ is finite, \aleph_0 , and $c = 2^{\aleph_0}$. In the following, group will mean abelian group.

LEMMA 1. If G is a torsion group with $|G| \leq \aleph_0$, then $|\mathscr{P}| = c$ unless

$$(1) G = p_1^{\infty} \oplus p_2^{\infty} \oplus \cdots \oplus p_n^{\infty} \oplus B,$$

a direct sum of (at most) a finite number of groups of type p^{∞} and a finite group, where $p_i \neq p_j$ if $i \neq j$. If G is of the form (1), then $|\mathscr{P}|$ is finite.

Proof. The latter statements is clear, and if none of the following hold

- (i) G decomposes into an infinite number of summands
- (ii) G contains $p^{\infty} \oplus p^{\infty}$ for some prime p
- (iii) $|B| = \aleph_0$, where B is the reduced part of G,

then G is of the form (1). Moreover, if (i) holds, then obviously $|\mathscr{P}| = c$. Every automorphism of p^{∞} determines a pure subgroup of $p^{\infty} \oplus p^{\infty}$, and distinct automorphisms correspond to distinct subgroups. Since $|A(p^{\infty}) =$ automorphism group | = c, it follows that $p^{\infty} \oplus p^{\infty}$ has c pure subgroups. Thus if (ii) holds, $|\mathscr{P}| = c$ since $p^{\infty} \oplus p^{\infty}$ is a direct summand of G. Finally, if (iii) holds and if (i) does not, then the following argument shows that $|\mathscr{P}| = c$. We may write $B = C_1 \oplus B_1 = C_1 \oplus C_2 \oplus B_2$, and continuing in this way define an infinite sequence C_n of cyclic groups such that no C_i is contained in the direct sum of any of the others. The direct sum of any subcollection of these cyclic groups is a pure subgroup of B and, therefore, of G.

An interesting corollary is noted: there is no torsion group with exactly \aleph_0 pure subgroups.

LEMMA 2. If $G = F \oplus B$ is the direct sum of a torsion free group

Received January 31, 1961. This research was supported by the National Science Foundation.

¹ This is precisely the proof of Boyer that such a group has c subgroups [2].