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1. Introduction. A special case of a result of Kaczmarz and
Steinhaus [4] (Theorem 2 with a = b) shows that if {a{} (i = 1, 2, •••)
is a sequence of real numbers with Σ°Li | a{ \ — + OD and a{ -» 0, then the
Rademacher series ΣΓ=i a>iRi(%) assumes every preassigned real value c
(cardinal number of the continuum) times for x in (0,1]. One object
•of this paper is to refine this result in certain directions. We shall prove

THEOREM 1. // the sequence {a{} is in l2, but not in ll9 then
2Γ=i ciiRi(%) assumes every preassigned real value on a set of Hausdorff
dimension 1.

We shall also prove

THEOREM 2. / / {αj is a sequence of bounded variation
'•(ΣΓ=i I ai — ai~ι I < °°) which is not in lx but α^-^0, then ΣΠ=i α^R^αO
assumes each preassigned real value on a set of Hausdorff dimension
at least 1/2.

In § 6, we apply the method of proof to a problem on the distribution
of digits in decimal expansions of numbers.

In § 7 through 11, we develop a theory of dimension of level sets
for series of the type ΣSLirVβ^α?) where r is a fixed number in the
interval [1/2, 1).

2 Preliminary definitions and lemmas.

DEFINITION 1. The ith(i = 1, 2, •••) Rademacher function is defined
to be Ri(x) — 1 - 2Si(x) (0 < x ^ 1), where e^x) is the ith digit of the
(unique) nonterminating binary expansion of x.

DEFINITION 2. Let X be a subset of Euclidean w-space. Let JS(X)
be a finite or countably infinite set of open spheres {/J (ΐ = 1, 2, •••)
with finite diameters | J{ | whose union covers X and whose diameters
do not exceed e where ε > 0. The Hausdorff outer measure of order s,
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