ITERATIONS OF GENERALIZED EULER FUNCTIONS

G. K. White

1. Introduction. In this paper p and q will denote primes. We recall that a function $f(n)$ of an integral variable $n \geqq 1$ is said to be multiplicative, if

$$
\begin{equation*}
f(m n)=f(m) f(n) \tag{1}
\end{equation*}
$$

whenever $(m, n)=1$, and additive, if

$$
\begin{equation*}
f(m n)=f(m)+f(n) \tag{2}
\end{equation*}
$$

whenever $(m, n)=1$. If however $f(n)$ satisfies (2) for all integers $m \geqq 1$, $n \geqq 1$ we shall say that $f(n)$ is completely additive. Consider a multiplicative integral-valued function $\psi(n)>0$ and put

$$
\begin{equation*}
\psi_{0}(n)=n, \psi_{1}(n)=\psi(n), \cdots, \psi_{r}(n)=\psi\left[\psi_{r-1}(n)\right], \cdots . \tag{3}
\end{equation*}
$$

We shall say that $\psi(n)$ is of finite index if, to each $n>1$, there is an integer $C=C(n)$ such that

$$
\psi_{r}(n)\left\{\begin{array}{l}
>1 \text { for } r \leqq C \tag{4}\\
=1 \text { for } r>C,
\end{array}\right.
$$

in which case we put $C(1)=0$.
The familiar Euler function

$$
\begin{equation*}
\varphi(n)=\sum_{\substack{m \leq n \\(m, n)=1}} 1=n \prod_{p / n}\left(1-\frac{1}{p}\right) \tag{5}
\end{equation*}
$$

is an example of such a function, since $\varphi(n)<n$. For this case ($\psi=\varphi$), properties of the corresponding function $C(n)$ were investigated by Pillai [1], who attributes the problem to Vaidyanathaswami. Later, Shapiro [2, 3, 4] observed that this particular $C(n)$ satisfied the condition

$$
C(m n)=C(m)+C(n)+ \begin{cases}1 & \text { for } m, n \text { both even } \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

and went on to obtain, inter alia, a certain class (S) of multiplicative functions $\psi(n)$ of finite index satisfying (6). In a restricted sense, (S) consists of functions similar in form to $\varphi(n)$; for example they satisfy

$$
\psi\left(x^{n}\right)[\psi(x)]^{n-2}=\left[\psi\left(x^{2}\right)\right]^{n-1}
$$

for all positive integers x, n.

[^0]
[^0]: Received June 15, 1961.

