A SPECIAL CLASS OF MATRICES

K. Rogers and E. G. Straus

1. Introduction. Let D be an integral domain, K its quotient field, D^{n} the set of all n-by- 1 matrices over D, and A an n-by- n matrix over a field containing K. We say that A has property P_{D} if and only if, for all nonzero u in D^{n}, the vector $A u$ has at least one component in $D^{*}=D-\{0\}$. The setting in which this property arose is detailed in [1], where we investigated the case where D was either Z, the rational integers, or the ring of integers of an algebraic number field of classnumber one. Now, if P is a permutation matrix, T is lower triangular with only ones in the diagonal, and N is nonsingular and over D, then $A=P T N$ has property P_{D}. It was shown in [1] that for $D=Z$ there are matrices not of the form PTN which have property P_{D}; but, at least in the case of the ring of integers of an algebraic number field of classnumber one, we found the necessary but far from sufficient condition, that $\operatorname{det} A$ be in D^{*}. Our present purpose is to extend this to all algebraic number fields and also to prove necessary and sufficient conditions for property P_{D} in certain cases.

Theorem I. Let D be a domain whose quotient field K is algebraic over its prime field. Let A be an n-by-n matrix, where $n \leqq \#(K) .{ }^{1}$ Then:
(i) If K is of prime characteristic, then A has property P_{D} if and only if $A=P T N$, where P, T and N are as above:
(ii) If D is Dedekind and K is a finite algebraic extension of the rationals, then for A to have P_{D} we must have $\operatorname{det} A \in D^{*}$.

Theorem II. If $D=D_{1}[t]$, where t is transcendental over D_{1}, if $\#\left(D_{1}\right)>n$, and if A has P_{D}, then the rows of A can be so ordered that the matrices A_{r} of the first r rows of A have all $r-b y-r$ minors in D and not all zero, for $r=1,2, \cdots, n$. In particular, the first row is over D, and $\operatorname{det} A \in D^{*}$.

If in addition we have only principal ideals, then we can reduce all but one element of the first row to zero and prove by induction:

Corollary. If $D=F[t]$, where $\#(F)>n$, so K is a simple transcendental extension, then A has P_{D} if and only if $A=P T N$, where P, T and N are as above.

[^0]
[^0]: Received August 11, 1961.
 ${ }^{1} \#(K)=$ cardinality of K.

