A SPECIAL CLASS OF MATRICES

K. ROGERS AND E. G. STRAUS

1. Introduction. Let D be an integral domain, K its quotient field, D^n the set of all *n*-by-1 matrices over D, and A an *n*-by-n matrix over a field containing K. We say that A has property P_{D} if and only if, for all nonzero u in D^n , the vector Au has at least one component in $D^* = D - \{0\}$. The setting in which this property arose is detailed in [1], where we investigated the case where D was either Z, the rational integers, or the ring of integers of an algebraic number field of classnumber one. Now, if P is a permutation matrix, T is lower triangular with only ones in the diagonal, and N is nonsingular and over D, then A = PTN has property P_{D} . It was shown in [1] that for D = Z there are matrices not of the form PTN which have property P_{D} ; but, at least in the case of the ring of integers of an algebraic number field of classnumber one, we found the necessary but far from sufficient condition, that det A be in D^* . Our present purpose is to extend this to all algebraic number fields and also to prove necessary and sufficient conditions for property P_D in certain cases.

THEOREM I. Let D be a domain whose quotient field K is algebraic over its prime field. Let A be an n-by-n matrix, where $n \leq \#(K)$.¹ Then:

(i) If K is of prime characteristic, then A has property P_D if and only if A = PTN, where P, T and N are as above:

(ii) If D is Dedekind and K is a finite algebraic extension of the rationals, then for A to have P_D we must have $\det A \in D^*$.

THEOREM II. If $D = D_1[t]$, where t is transcendental over D_1 , if $\#(D_1) > n$, and if A has P_D , then the rows of A can be so ordered that the matrices A_r of the first r rows of A have all r-by-r minors in D and not all zero, for $r = 1, 2, \dots, n$. In particular, the first row is over D, and det $A \in D^*$.

If in addition we have only principal ideals, then we can reduce all but one element of the first row to zero and prove by induction:

COROLLARY. If D = F[t], where #(F) > n, so K is a simple transcendental extension, then A has P_D if and only if A = PTN, where P, T and N are as above.

Received August 11, 1961.

¹ #(K) =cardinality of K.