THE SUM OF THE ELEMENTS OF THE POWERS OF A MATRIX

Marvin Marcus and Morris Newman

1. Introduction and results. In the first two sections of this paper A will be assumed to be an irreducible nonnegative n-square matrix; $A \geqq 0$. Let $s_{k}=s_{k}(A)$ denote the sum of the entries in the matrix A^{k}, where k is a positive integer. The problem considered in the first section is the convergence of the ratio s_{k} / s_{k-1} as $k \rightarrow \infty$. In $\S 3$ we obtain an inequality relating the s_{k} for various k in the case A is a Hermitian matrix and in § 4 we discuss convexity properties of s_{2} / s_{1}.

Let λ_{1} be the dominant positive characteristic root of A which can be taken as 1 for the purposes of our subsequent arguments. If h is the number of charcteristic roots of A of modulus 1 , then they are the roots of $\lambda^{h}-1=0$ and are all simple [3]. Let $\varepsilon=e^{2 \pi i / h}$ so that $1, \varepsilon, \varepsilon^{2}, \cdots$, ε^{h-1} are the roots of modulus 1. Choose permutation matrices P and Q so that

$$
P A P^{T}=\left[\begin{array}{llllll}
0 & A_{1} & & & 0 \tag{1}\\
& 0 & A_{2} & & & \\
& & & \cdot & \\
& & & & A_{h-1} \\
A_{h} & & & & 0
\end{array}\right]
$$

and

$$
Q A^{T} Q^{T}=\left[\begin{array}{cccccc}
0 & B_{1} & & & 0 \tag{2}\\
& 0 & B_{2} & & & \\
& & & \cdot & \\
& & & & B_{h-1} \\
B_{h} & & & 0
\end{array}\right]
$$

where the zero blocks down the main diagonal in both (1) and (2) are square. We shall asume henceforth that A is in this F robenius normal form. In other words we assume A is already in the form given on the right in (1). Let u_{1}, \cdots, u_{n} and v_{1}, \cdots, v_{n} be the characteristic vectors of A and A^{T} corresponding to $1, \varepsilon, \cdots, \varepsilon^{h-1}$ respectively. We write for the maximal characteristic vector

$$
\begin{equation*}
u_{1}=z_{1} \dot{+} \cdots \dot{+} z_{n}, \tag{3}
\end{equation*}
$$

[^0]
[^0]: Received September 27, 1961. This work was supported in part by the Office of Naval Research. The authors wish to express their thanks to K . Goldberg for many valuable suggestions.

