A GENERAL SOLUTION OF TONELLI'S PROBLEM OF THE CALCULUS OF VARIATIONS

Lionello A. Lombardi

Summary. The alpha-asymptotical property is defined for integrals depending upon any number m of surfaces of any dimension in nonparametric form. The existence of an absolute minimum of any alphaasymptotical and lower semicontinuous integral in any regular class of varieties which is closed with respect to the m-uniform (Tchebyshev) metric is proved.

1. Definitions. Let $D_{i}(i=1,2, \cdots, m)$ be a closed bounded set of the n-dimensional Euclidean space of the variable vector $x_{i} \equiv x_{i}^{j}(j=$ $1,2, \cdots, n)$, bounded by surfaces which are absolutely continuous in the sense of Tonelli $[14,16,17]$, without multiple points, and let D be the cartesian product $\Pi_{1 i}^{m} D_{i}$. Let $y \equiv y_{i}(i=1,2, \cdots, m)$ denote a vertical m-vector, and let p denote an $m x n$ matrix, whose row-vectors are $p_{i} \equiv$ $p_{i}^{j}(j=1,2, \cdots, n)$. Let x be the $m x n$ matrix whose row-vectors are x_{i} and $\phi[x, y, p]$ a real-valued function, defined for $x_{i} \in D_{i}(i=1,2, \cdots, m)$ and for any y and p, which is continuous with all its derivatives of the types

$$
\frac{\partial \phi[x, y, p]}{\partial p_{r}^{s}} \text { and } \frac{\partial^{2} \phi[x, y, p]}{\partial p_{r}^{s} \partial p_{r}^{t}} \quad(r=1, \cdots, m ; s, t=1 \cdots n) .
$$

Let $q \leqq m$ be a positive integer and let U_{q} denote a set of q distinct positive integers out of the first m; let ζ be an index ranging over U_{q}, and let $\mu(\zeta)$ be a mapping of U_{q} into the set of the first n integers. It will be assumed throughout, that for every q, every U_{q} and every $\mu(\zeta)$, all the partial derivatives

$$
\begin{equation*}
\frac{\partial^{2 q} \phi[x, y, p]}{\prod_{\zeta=1}^{q} \partial x_{\zeta}^{\mu(\zeta)} \partial p_{\zeta}^{\mu(\zeta)}} \tag{1.1}
\end{equation*}
$$

exist and are continuous for every $x \in D$ and for every y and p.
Let T be a real positive number. Let $y(x) \equiv y_{i}\left(x_{i}\right)(i=1,2, \cdots, m)$ denote a vector-valued function of the matrix x, such that each $y_{i}\left(x_{i}\right)$ is a function with values in $[-T, T]$, which only depends upon the row

[^0]
[^0]: Received May 26, 1961. The preparation of this paper was sponsored by the Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the United States Government. Now with the School of Industrial Management at the Massachusetts Institute of Technology.

 The author wishes also to express his thanks to Gerald W. Kimble for valuable help in preparing the manuscript.

