COMPLETION OF MATHEMATICAL SYSTEMS ## A. H. KRUSE 1. Introduction. The completion problem to be considered may be informally and tentatively described as follows. Let \mathcal{A} be a class of systems of some type (e.g., \mathcal{A} will be the class of all fields in Example 1; cf. §§ 6,7). For all $a, b \in \mathcal{A}$ let "a < b" mean that a is a subsystem (e.g., subfield in Example 1) of b. For each $a \in \mathcal{A}$ let $\pi(a)$ be a set of propositional forms involving unknowns (e.g., polynomial equations in one unknown in Example 1); each of these forms may become a true or false proposition upon substitution of elements of a for the unknowns; a substitution turning a form into a true proposition is a solution of the form. For each $a \in \mathcal{A}$ let $\pi'(a)$ be the set of all members of $\pi(a)$ with solutions (relative to a). If $a, b \in \mathcal{A}$ and a < b, then each $p \in \pi(a)$ will correspond to some member, say $\rho_a^b(p)$, of $\pi(b)$ (e.g., if \mathscr{A} is the class of all groups, the propositional form " $y^{-1}xy \neq x$ for some y in a" in unknown x could correspond to " $y^{-1}xy \neq x$ for some y in b"). We may say that $a \in \mathcal{A}$ is *complete* if and only if for each $b \in \mathcal{A}$ with a < band each $p \in \pi(a)$: if p has no solution (relative to a), then $\rho_a^b(p)$ has no solution (relative to b). (E.g., in Example 1, a field is complete if and only if it is algebraically closed.) The completion problem to be considered is: Does each $a \in \mathcal{A}$ have a complete extension? This extension problem will be formulated rigorously in §§ 5,6. In some explicit special cases in modern algebra the existence of a complete extension rests on (transfinitely) recursive definitions the justification of which at first glance would seem to require a very strong version of the axiom of choice (cf. Remark 5 of § 7). In this paper the set-theoretic foundations of such procedures will be examined. The result is a theorem from which will follow the usual extension theorems via the usual weak version of the axiom of choice. 2. Set-theoretic preliminaries. In axiomatic set theory one may consider the following versions of the axiom of choice. Received July 15, 1959, and in revised form August 7, 1961. ⁽A) Earlier versions of this paper consisted of research done at the University of Kansas partially supported by National Science Foundation Grant NSF-G 4917. The writer is indebted to W. R. Scott for reading the first version and making several suggestions. The writer is indebted to the referee for a number of comments and suggestions, some leading to substantial improvements over earlier versions of this paper. ¹ Relative to (axiomatic) set theory, since a propositional form exists only in the metatheory, the propositional forms as such will have to be replaced by set-theoretic antecedents. ² This completion problem is a straightforward generalization of problems raised and solved by W. R. Scott [6] for groups (however, cf. Remark 5 of §7). The general problem of this paper will be illustrated by Scott's result via Example 2 (cf. §§6, 7).