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l Introduction* The completion problem to be considered may be
informally and tentatively described as follows.

Let j y be a class of systems of some type (e.g., S^ will be the class
of all fields in Example 1; cf. §§ 6,7). For all a,bes^ let "α < 6" mean
that a is a subsystem (e.g., subfield in Example 1) of b. For each a e Ssf
let π(a) be a set of propositional forms1 involving unknowns (e.g., poly-
nomial equations in one unknown in Example 1); each of these forms may
become a true or false proposition upon substitution of elements of a for
the unknowns; a substitution turning a form into a true proposition is a
solution of the form. For each a e s/ let π\a) be the set of all members
of π(a) with solutions (relative to a). If α, b e Szf and a <b, then each
peπ(a) will correspond to some member, say pl(p), of π(b) (e.g., if sf
is the class of all groups, the propositional form "y~λxy Φ x for some y
in α" in unknown x could correspond to "y~λxy Φ x for some y in 6"). We
may say that a e s/ is complete if and only if for each b e s^ with a < b
and each p e π(a): if p has no solution (relative to α), then p\{p) has no
solution (relative to 6). (E.g., in Example 1, a field is complete if and
only if it is algebraically closed.) The completion problem to be con-
sidered is: Does each a e s$f have a complete extension?2

This extension problem will be formulated rigorously in §§ 5,6. In
some explicit special cases in modern algebra the existence of a complete
extension rests on (transfinitely) recursive definitions the justification of
which at first glance would seem to require a very strong version of the
axiom of choice (cf. Remark 5 of § 7). In this paper the set-theoretic
foundations of such procedures will be examined. The result is a theorem
from which will follow the usual extension theorems via the usual weak
version of the axiom of choice.

2. Set'theoretic preliminaries* In axiomatic set theory one may con-
sider the following versions of the axiom of choice.
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1 Relative to (axiomatic) set theory, since a propositional form exists only in the meta-
theory, the propositional forms as such will have to be replaced by set-theoretic antecedents.

2 This completion problem is a straightforward generalization of problems raised and
solved by W. R. Scott [6] for groups (however, cf. Remark 5 of §7). The general problem
of this paper will be illustrated by Scott's result via Example 2 (cf. §§6, 7).

589


