ON PERMUTATIONS INDUCED BY LINEAR VALUE FUNCTIONS

Stewart S. Cairns

1. Background and statement of the problem. Consider a set of n objects, symbolized by the integers

$$
\begin{equation*}
N=(1, \cdots, n) \tag{1.1}
\end{equation*}
$$

Let v_{i} be a real number to be called the value of object $i(i=1, \cdots, n)$. The value of $J=\left(i_{1}, \cdots, i_{j}\right) \subset N$ will mean

$$
\begin{equation*}
v(J)=\sum_{h=1}^{j} v_{i_{h}} \tag{1.2}
\end{equation*}
$$

and the value of the null set J_{0} is

$$
\begin{equation*}
v\left(J_{0}\right)=0 \tag{1.3}
\end{equation*}
$$

The present paper is partly motivated by its bearing on linear programming problems in which a subset of N is sought, having a maximum value among all subsets satisfying some given restriction; for example, a condition of the form $\sum_{h=1}^{j} w_{i_{h}}<W$. In this restriction, w might be the weight of object i, and one would be seeking a subset of maximum value among those with a given upper bound on their total weights. In many applications, v_{i} and w_{i} are positive, but we do not impose this condition at present.

Let $\{J\}$ be the set of all the 2^{n} subsets of N. Given $J \in\{J\}$, we will denote with $[J]$ the set of all subsets of N each having the same value as J. Thus $\{J\}$ is partitioned into equivalence classes, each of the form

$$
\begin{equation*}
[J]=\{K \subset N \mid v(K)=v(J)\} \tag{1.4}
\end{equation*}
$$

These equivalence classes are ordered by the relation \prec, to be read precedes, defined thus:

$$
\begin{equation*}
[J] \prec[K] \text { if } \quad v(J)<v(K) \tag{1.5}
\end{equation*}
$$

(A) We will denote by $I I(V ;[J])$ the permutation of the equivalence classes in which they are arranged in order of increasing values; that is, $[J]$ comes before $[K]$ if $[J] \prec[K]$.

[^0]
[^0]: Received September 28, 1961. This is a revision of a paper written in 1955 at the RAND Corporation (RAND No. P-735) and presented to the American Mathematical Society, December, 1955. The title, before revison, was "On the Partition of the Vertices of an n-Cube by an $(n-1)$-Plane."

