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l Introduction. Let Sn+1 — {zu z29 , zn+1} be a set of n + 1 com-
plex numbers and let / be a function on a set containing Sn+1 to the
complex numbers. The divided difference dn — dn(f\z19 z2, , zn+1) of
order n formed for the function / in the points1 Sn+1 is defined in a
recursive manner as follows:

zx- z2

d2 = d2(f\zu z2y z3) =

dn = d n ( / | ^ , z29 •••, zw+1)

= ^»-i(/1 z19 z2J - - , gw) - dn^(f 1 gn+1, ga, - -, zn)

The definition requires further discussion when the points in Sn+1 are
not all distinct. We shall suppose that they are distinct unless provi-
sion is explicitly made for coincidences.

It can be proved by induction [7, p. 15] that if

ωn+1(z) = (z - zx){z - z2) (z - zn+1) ,

then

*=i ω'n+1(zk)

where the prime denotes differentiation of con+1(z) with respect to z.
This formula shows that dn is a symmetric function of zlf z2, , zn+1.

The divided differences of a function given on the real line play a
prominent role in the mathematics of computation. Their counterparts
in the complex plane have appeared in various classical studies of ap-
proximation by complex polynomials. The formal algebra of complex
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1 We use the words ' 'points" and "numbers" interchangeably in referring to the argu-
ments in divided differences. This follows the practice in interpolation theory. It is con-
sistent within this terminology to speak of "coincident points" zk.
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