SCATTERING FOR NON-LINEAR WAVE EQUATIONS

FELIX E. BROWDER AND WALTER A. STRAUSS

Introduction. Let H be a Hilbert space, A a positive densely defined self-adjoint linear operator in H (i.e. $A \ge c_0 I > 0$), $M_t(u)$ a family of (possibly) non-linear operators with domain and range in H and depending on the real parameter t, $-\infty < t < +\infty$.

Consider the generalized "wave equation"

(1)
$$\frac{d^2u}{dt^2}(t) + (Au)(t) + M_t(u(t)) = 0$$

where solutions are functions u(t) from the real line E^1 to H. The equation (1) may obviously be regarded as a perturbation of the simpler equation

$$(2) \qquad \qquad \frac{d^2u}{dt^2} + Au = 0.$$

The scattering problem for the perturbed equation (1) consists of the following:

(1). Let $u_0(t)$ be any solution of equation (2). For any real number s, prove the existence of a solution $u_s(t)$ of the perturbed equation (1) such that

(3)
$$u_s(s) = u_0(s); \left(\frac{du_s}{dt}\right)(s) = \left(\frac{du_0}{dt}\right)(s).$$

(II). Show that as $s \to \pm \infty$, $u_s(t)$ converges in some suitable sense to solutions $u_{\pm\infty}(t)$ of equation (2). In this case, we define $W_{-}(u_0) = u_{-\infty}(t)$; $W_{+}(u_0) = u_{+\infty}(t)$.

(III). Study the properties of the operators W_{-} and W_{+} defined in (II), show the existence of $W_{+}^{-1}W_{-} = S$, and study the properties of the scattering operator S.

In a preceding paper [5], the second-named author has solved the scattering problem for equation (1) under the hypothesis that there exist a summable function $\theta(t)$ on E^1 such that

(4)
$$||A^{1/2}[M_t(u) - M_t(v)]|| \le \theta(t) ||Au - Av||$$

Received March 28, 1962.