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1. This paper deals with proper solutions of the second-order
nonlinear differential equation

(1.1) y" = yF(yf x) ,

where ( i ) F(u, x) is continuous in u and x for 0 ^ u < + oo and

x =. XQ>

(ii) F(u, x) > 0 for u > 0 and x ^ a?0,

(iii) F(u, x) < F(v, x) f o r e a c h x ^ x 0 a n d 0<u<v< + co,

By a proper solution we understand a real-valued solution y of (1.1) which
is of class C2[a, oo), where x0 ^ a < + oo. An example of equations
of this type is the Emden-Fower equation [2, chapter 7]

(1.2) y" = xxyn .

Our interest is in the existence and asymptotic behavior of positive
proper solutions of (1.1). Since F(y, x) > 0 for y > 0, all positive
solutions of this equation are convex. They are therefore of two types:
(1) those which are monotonically decreasing and tending to nonnegative
limits as x —• + co, and (2) those which are ultimately increasing and
becoming unbounded as x becomes infinite.

In this section we shall consider proper solutions which are of
type (1), i.e., solutions which are confined to the semi-infinite strip
S — {(x, y): 0Sy^kK,a^Lx< +oo}. We observe that in view of
properties (i) and (iii) the function yF(y, x) satisfies a Lipschitz con-
dition

(1.3) I uF(uf x) - vF(vf x) \ ^ H\ u - v \

in every closed rectangle R = {(x, y): 0 ^ y S. K, a ^ x ^ 6}, where
H = H(K, α, 6). Before taking up the existence of such solutions, we
first derive the following lemmas.

LEMMA 1.1. Let u{x) be a nonnegative solution of (1.1) passing
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