ON AN INEQUALITY OF P. R. BEESACK

ZBEEV NEHARI

In a recent paper [1], P. R. Beesack derived the inequality
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for the Green’s function g(x, s) of the differential system
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In addition to being interesting in its own right, this inequality is a
useful tool in the study of the oscillatory behavior of nth order differ-
ential equations. It would therefore appear to be worth while to give
a short proof of (1). The derivation of this inequality in [1] is rather
complicated.

We denote by [x,, @, +++, %] the kth difference quotient of the
function g(x) = g(x, s), i.e., we set
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This difference quotient can also be represented in the form

(8) ooyl = | oo [0t + s o + i )dtdts o dtyy,

where the integration is to be extended over all the positive values
of the t, for which

(4) to+t1+"'+tk=1.

This formula, which goes back to Hermite, is easily verified by induction
(cf., e.g., [2]). It holds if g(x) has continuous derivatives up to the
order k£ — 1, and if g® is piecewise continuous.

Since, by its definition, g(x, s) has continuous derivatives up to
the order n — 2, while g™ has the jump
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