IRREDUCIBLE GROUPS OF AUTOMORPHISMS OF ABELIAN GROUPS

REINHOLD BAER

The group Γ of automorphisms of the abelian group A is termed irreducible, if 0 and A are the only Γ -admissible subgroups of A. It is our aim to investigate the influence of the structure of the abstract group Γ upon the structure of the pair A, Γ . In this respect we succeed in proving the following results:

If Γ is locally finite, then A is an elementary abelian p-group and the centralizer \varDelta of Γ within the ring of endomorphisms of A is a commutative, absolutely algebraic field of characteristic p. If we impose the stronger hypothesis that Γ possesses an abelian torsion subgroup of finite index, then the rank of [the vector space] A over \varDelta is finite and Γ is a group of finite rank. If we add the further hypothesis that the orders of the elements in Γ are bounded, then A and Γ are finite.

NOTATIONS

Locally finite group =	= group whose finitely generated subgroups are
	finite.
Almost abelian group =	= group possessing abelian subgroups of finite
	index
Group of finite rank =	= group whose finitely generated subgroups may
	be generated by fewer than a fixed number
	of elements
<i>m</i> -group =	group by whose subgroups the minimum
	condition is satisfied.

Composition of the elements in the basic abelian group A is denoted by addition. The effect of the endomorphism σ of A upon the element a in A will usually be denoted by $a\sigma$ unless A is considered as a vector space over some field of scalars in which case the scalars may appear to the left of the vectors.

PROPOSITION. If the irreducible group Γ of automorphisms of the abelian group $A \neq 0$ is locally finite, then

(a) the centralizer \varDelta of Γ [within the ring of endomorphisms of A] is a commutative, absolutely algebraic field of characteristic p, a prime,

Received August 5, 1963.