BASIC SEQUENCES AND THE PALEY-WIENER CRITERION

James R. Retherford

1. Introduction. Throughout the paper X will denote a complete metric linear space (i.e., a complete topological linear space with topology derived from a metric d with the property that $d(x, y)=d(x-y, 0)$, for all $x, y \in X$) or some specialization thereof over the real or complex field; $\|x\|$ will denote $d(x, 0)$; and if $\left\{x_{n}\right\}$ is a sequence in $X,\left[x_{n}\right]$ will denote the closed linear span of the elements $\left\{x_{n}\right\}_{n \in \omega}$.

A sequence $\left\{x_{n}\right\}$ is said to be a basic sequence of vectors if $\left\{x_{n}\right\}$ is a basis of vectors of the space $\left[x_{n}\right]$, i.e., for each $x \in\left[x_{n}\right]$ there corresponds a unique sequence of scalars $\left\{a_{i}\right\}$ such that

$$
\begin{equation*}
x=\sum_{i=1}^{\infty} a_{i} x_{i} \tag{1.1}
\end{equation*}
$$

the convergence being in the topology of X. We say that the basis is unconditional if the convergence in (1.1) is unconditional. It is well known that if $\left\{x_{n}\right\}$ is a basic sequence of vectors, then every $x \in\left[x_{n}\right]$ can be represented in the form $x=\sum_{i=1}^{\infty} f_{i}(x) x_{i}$ where $\left\{f_{i}\right\}$ is the sequence of continuous coefficient functionals biorthogonal to $\left\{x_{i}\right\}$ (Arsove [1, p. 368], Dunford and Schwartz [4, p. 71]).

Similarly, we say that a sequence $\left\{M_{i}\right\}$ of nontrivial subspaces of a complete metric linear space X is a basis of subspaces of X, if for each $x \in X$, there corresponds a unique sequence $\left\{x_{i}\right\}, x_{i} \in M_{i}$ for each i, such that

$$
\begin{equation*}
x=\sum_{i=1}^{\infty} x_{i} \tag{1.2}
\end{equation*}
$$

This concept has been studied by Fage [5], Markus [9], and others in separable Hilbert space and by Grimblyum [6] and McArthur [10] in complete metric linear spaces. We say that the basis of subspaces is unconditional if the convergence in (1.2) is unconditional.

If $\left\{M_{i}\right\}$ is a basis of subspaces for X, for each $i \in \omega$ define E_{i} from X into X by $E_{i}(x)=x_{i}$ where $\sum_{i=1}^{\infty} x_{i}$ is the unique representation of $x \in X . E_{i}$ is a projection (linear and idempotent); $E_{i} E_{j}=0$ if $i \neq j$; the range of E_{i} is M_{i}; for each $x \in X, x=\sum_{i=1}^{\infty} E_{i}(x)$ and if $E_{i}(x)=0$ for each i, then $x=0 .\left\{M_{i}\right\}$ will be called a Schauder basis of subspaces if each E_{i} is continuous.

September 24, 1962. This research was supported by the Air Force Office of Scientific Research.

