A NOTE ON ORTHOGONAL LATIN SQUARES

Kenneth Rogers

1. Introduction. The purpose of this note is to give an improved estimate for $N(n)$, the maximal number of pairwise orthogonal Latin squares, by following the method of Chowla, Erdös and Straus [2]. The difference is that we use a result of Buchstab [1] rather than that of Rademacher in the sieve argument. Our result is that if c is any number less than $1 / 42$, then for all large n we have $N(n)>n^{c}$.

In the notation of Buchstab, write $P_{\omega}\left(x ; x^{1 / a}\right)$ for the number of positive integers not exceeding x which do not lie in any of the progressions $a_{0} \bmod p_{0}, a_{i} \bmod p_{i}$, or $b_{i} \bmod p_{i}$, where $p_{0}=2$, and p_{i} runs over the primes from 3 to $x^{1 / a}$. The subscript ω refers to the fact that P depends on the a_{i}, b_{i}. Buchstab proves that

$$
\begin{equation*}
P_{\omega}\left(x ; x^{1 / a}\right)>\lambda(\alpha) \frac{c^{\prime} x}{(\log x)^{2}}+0\left(\frac{x}{(\log x)^{3}}\right) \tag{1}
\end{equation*}
$$

where c^{\prime} is a constant 0.4161 and $\lambda(5) \geqq 0.96$.
The properties of $N(n)$ used for the proof are those of [2]:
A. $\quad N(a b) \geqq \operatorname{Min}\{N(a), N(b)\}$.
B. $N(n) \leqq n-1$, with equality when n is a prime-power.
C. If $k \leqq 1+N(m)$ and $1<u<m$, then

$$
N(u+k m) \geqq \operatorname{Min}\{N(k), N(k+1), 1+N(m), 1+N(u)\}-1
$$

We note that A and B are due to H.F. MacNeish, while C was found by Bose and Shrikhande.
2. Lower estimation of $N(n)$. We must deal separately with odd n and even n, and we use a fact proven in [1], called there "Lemma D ":
D. The number of integers no greater than x, which have a prime factor in common with n and greater than n^{g}, is no greater than $x / g n^{g}$.

Estimate for even n. We pick k so that

$$
\left\{\begin{array}{l}
k \equiv-1 \quad\left(\bmod 2^{\left[\log _{2} n / \alpha\right]}\right) \tag{2}\\
k \not \equiv 0 \text { or }-1(\bmod p) \text { for } 3 \leqq p \leqq n^{1 / \beta} \\
k \leqq n^{1 / \gamma}
\end{array}\right.
$$

[^0]
[^0]: Received December 11, 1963. Partially supported by NSF contract GP 1925.

