A PROOF OF THE NAKAOKA-TODA FORMULA

K. A. HARDIE

If X_i $(1 \le j \le r)$ are objects we denote the corresponding *r*-tuple (X_1, X_2, \dots, X_r) by X and the (r-1)-tuple $(X_1, X_2, \dots, X_{i-1}, X_{i+1}, \dots, X_r)$ by X(i). When X_j $(1 \le j \le r)$ are based topological spaces ΠX will denote their topological product and $\Pi^i X$ the subspace of ΠX whose points have at least *i* coordinates at base points (always denote by *).

Let $\alpha_j \in \pi_{n_j}(X_j)$ $(n_j \ge 2, 1 \le j \le r, r \ge 3)$ be elements of homotopy groups then we have

$$\star \alpha(\text{say}) = \alpha_1 \star \alpha_2 \star \cdots \star \alpha_r \in \pi_n(\Pi X, \Pi^1 X)$$
,

where $n = \Sigma n_j$ and \star denotes the product of Blakers and Massey [1]. We thus also have

$$\star \alpha(i) \in \pi_{n-n_i}(\Pi X(i), \Pi^1 X(i))$$
.

There is a natural map $\Pi X(i)$, $\Pi^1 X(i) \to \Pi^1 X$, $\Pi^2 X$ and we denote also by $\star \alpha(j)$ its image induced in $\pi_{n-n_i}(\Pi^1 X, \Pi^2 X)$. Let ∂ denote the homotopy boundary homomorphism in the exact sequence of the triple $(\Pi X, \Pi^1 X, \Pi^2 X)$. We shall prove the formula:

$$\partial \star \alpha = \Sigma(1 \leq i \leq r)(-1)^{\varepsilon(i)}[\alpha_i, \star \alpha(i)] \in \pi_{n-1}(\Pi^1 X, \Pi^2 X) , \qquad (0.1)$$

where $\varepsilon(1) = 0$, $\varepsilon(i) = n_i(n_1 + n_2 + \cdots + n_{i-1})$ (i > 1) and where the brackets refer to the generalised Whitehead product of Blakers and Massey [1]. In the case of the universal example 0.1 becomes the formula of Nakaoka and Toda stated in [4] and proved there for r = 3. I. M. James¹ has raised the question of its validity for r > 3 and as the formula has applications (see [2], [3]) it would seem desirable to have a proof available in the literature. The present argument while inspired by [4] has a few novel features.

(1) DEFINITIONS AND LEMMAS. Let $x = (x_1, x_2, \dots, x_n)$ denote a point of *n*-dimensional Euclidean space and let

$$egin{aligned} &V^n=\{x;\, \varSigma x_i^2 \leq 1\}\ ,\ &S^{n-1}=\{x;\, \varSigma x_i^2=1\}\ ,\ &E_+^{n-1}=\{x\in S^n;\, x_n \geq 0\}\ ,\ &E_-^{n-1}=\{x\in S^n;\, x_n \leq 0\}\ ,\ &D_+^n=\{x\in V^n;\, x_n \geq 0\} \end{aligned}$$

Received November 12, 1963.

¹ Math. Reviews 25 # 4521.