APPROXIMATION BY CONVOLUTIONS

R.E. EDWARDS

This paper is concerned mainly with approximating functions on closed subsets P of a locally compact Abelian group G by absolute-convex combinations of convolutions f * g, with f and g extracted from bounded subsets of conjugate Lebesgue spaces $L^{p}(G)$ and $L^{p'}(G)$. It is shown that the Helson subsets of G can be characterised in terms of this approximation problem, and that the solubility of this problem for P is closely related to questions concerning certain multipliers of $L^{p}(G)$. The final theorem shows in particular that the P. J. Cohen factorisation theorem for $L^{1}(G)$ fails badly for $L^{p}(G)$ whenever G is infinite compact Abelian and p > 1.

1. The Approximation Problem.

(1.1) Throughout this note, G denotes a locally compact Abelian group and X its character group. For the most part we shall be concerned with the possibility of approximating functions on closed subsets P of G by absolute-convex combinations

(1)
$$\sum_{r=1}^{n} \alpha_r(f_r * g_r) ,$$

of convolutions f * g, where f and g are selected freely from bounded subsets of conjugate Lebesgue spaces $L^{p}(G)$ and $L^{p'}(G)$ (1/p + 1/p' =1). In the sums (1), the number n of terms is variable, whilst the complex coefficients α_r are subject to the condition

(2)
$$\sum_{r=1}^n |\alpha_r| \leq 1.$$

Accordingly, if the f_r and g_r are respectively free to range over subsets A and B of $L^{p}(G)$ and $L^{p'}(G)$, the allowed sums (1) compose precisely the convex, balanced envelope of

$$A \ast B = \{ f \ast g : f \in A, g \in B \}.$$

We denote by $C_0(G)$ the Banach space of continuous, complexvalued functions on G which tend to zero at infinity, the norm being $|| u || = \sup \{ | u(x) | : x \in G \}$. The space $C_0(P)$ is defined similarly, Preplacing G throughout. If G (or P) is compact, the restriction that the functions tend to zero at infinity becomes void; we then write C(G) (or C(P)) in place of $C_0(G)$ (or $C_0(P)$).

It is well-known that if $1 then <math>f * g \in C_0(G)$ whenever

Received February 5, 1964.