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SOME GENERAL PROPERTIES OF MULTI-VALUED
FUNCTIONS

RaYMOND E. SMITHSON

The object is to determine what theorems for single-valued
functions can be extended to which class of multi-valued
functions. It is shown that an arc cannot be mapped onto a
circle by a continuous, monotone multi-valued function when
the image of each point is an arc, On the other hand, the
arc can be mapped onto a nonlocally connected space by a
monotone, continuous function such that the image of each
point is an arc., Characterizations of nonalternating functions
analogous to the results in the single-valued theory are obtained,
and it is shown that an nonalternating semi-single-valued
continuous function on a dendrite is monotone. An analog of
the monotone light factorization theorem is obtained for semi-
single-valued continuous functions,

Some other results are: an open continuous function with
finite images maps a regular curve onto a regular curve, and
a continuous function with finite images maps a locally con-
nected, compact space onto a locally connected compact space.

A number of definitions for continuity have been proposed for multi-
valued or set-valued functions, and Wayman Strother studied the problem
of continuity extensively [10, 11, 12]. Also Choquet [2] has studied
upper and lower semi-continuous functions. Further, Berge, unlike most
authors, allows functions to be multi-valued in [1]. However, much of
the work that has been done on set-valued functions has been devoted to
the discovery of fixed point theorems ([3], [7] through [9], [11], [13],
and [15] through [17]). The purpose of this paper is to investigate
properties of multi-valued functions which are similar to the properties
of single-valued functions studied in G.T. Whyburn’s book, Analytic
Topology, [18].

We shall use the following topology on the set of closed subsets
of a space Y. Let

S(Y) ={ECY: F is closed and nonempty}.

Let S(Y) have the topology used by Michael [6]; i.e., if V.-, V,
are open subsets of Y, then the collection <V, -+, V,> = {Eec S(Y):
ENV,#¢ for all 4, andE cJr, V,} is a basis for the open sets of S(Y).
We shall call this topology the finite topology. This is equivalent to
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