ISOMORPHIC GROUPS AND GROUP RINGS

D. S. PASSMAN

Let \mathfrak{G} be a finite group, S a commutative ring with one and $S[\mathfrak{G}]$ the group ring of \mathfrak{G} over S. If \mathfrak{H} is a group with $\mathfrak{G} \cong \mathfrak{H}$ then clearly $S[\mathfrak{G}] \cong S[\mathfrak{H}]$ where the latter is an S-isomorphism. We study here the converse question: For which groups \mathfrak{G} and rings S does $S[\mathfrak{G}] \cong S[\mathfrak{H}]$ imply that \mathfrak{G} is isomorphic to \mathfrak{H} ?

We consider first the case where S = K is a field. It is known that if \mathfrak{B} is abelian then $Q[\mathfrak{B}] \cong Q[\mathfrak{F}]$ implies that $\mathfrak{B} \cong \mathfrak{F}$ where Q is the field of rational numbers. We show here that this result does not extend to all groups \mathfrak{B} . In fact by a simple counting argument we exhibit a large set of nonisomorphic p-groups with isomorphic group algebras over all noncharacteristic p fields. Thus for groups in general the only fields if interest are those whose characteristic divides the order of the group.

We now let S = R be the ring of integers in some finite algebraic extension of the rationals. We show here that the group ring $R[\mathfrak{G}]$ determines the set of normal subgroups of \mathfrak{G} along with many of the natural operations defined on this set. For example, under the assumption that \mathfrak{G} is nilpotent, we show that given normal subgroups \mathfrak{M} and \mathfrak{N} , the group ring determines the commutator subgroup $(\mathfrak{M}, \mathfrak{N})$. Finally we consider several special cases. In particular we show that if \mathfrak{G} is nilpotent of class 2 then $R[\mathfrak{G}] \cong R[\mathfrak{G}]$ implies $\mathfrak{G} \cong \mathfrak{H}$.

1. Remarks on group algebras. Recently examples have been given of pairs of groups $\{\emptyset, \emptyset\}$ for which $K[\emptyset]$ is K-isomorphic to $K[\emptyset]$ for all fields K whose characteristic does not divide the order of the groups. We show here by a simple counting argument that this is not particularly surprising. This approach was suggested by Professor R. Brauer.

We prove

THEOREM A. Suppose $Q[\mathfrak{G}] \simeq Q[\mathfrak{G}]$ where Q is the field of rational numbers. Then for all fields K whose characteristic does not divide $|\mathfrak{G}| = |\mathfrak{G}|$, the order of the groups, we have $K[\mathfrak{G}] \simeq K[\mathfrak{G}]$.

THEOREM B. There exists a set of $p^{B(n)}$ nonisomorphic groups of order p^n where $B(n) = 2/27 (n^3 - 17 n^2)$ which have isomorphic group algebras over all noncharacteristic p fields.

Received January 28, 1964.