SOME AVERAGES OF CHARACTER SUMS

H. Walum

Let χ and ψ be nonprincipal characters $\bmod p$. Let f be a polynomial $\bmod p$ and let a_{1}, \cdots, a_{p} be complex constants. We will assume $a_{j}=a_{k}$ for $j \equiv k(p)$, and thus have a_{n} defined for all n. Define

$$
\begin{equation*}
S=\sum_{r} a_{r} \chi(f(r)) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{n}(c)=\sum_{r} \psi(r) \chi\left(r^{n}-c\right) \tag{2}
\end{equation*}
$$

where the variables of summation run through a complete system of residues $\bmod p$.

The averages in question are

$$
\begin{equation*}
A_{1}=\sum_{a=1}^{p-1}\left|J_{n}(a)\right|^{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2}=\Sigma|S|^{2} \tag{4}
\end{equation*}
$$

where the sum in (4) is over the coefficients mod p of certain fixed powers of the variables in f. Exact formulae for A_{1} will be obtained in all cases, and for A_{2} in an extensive class of cases.

Specifically, the following theorems are true.
Theorem I. Let $f(r)=y r^{m_{1}}+x r^{m_{2}}+g(r)$ and assume ($m_{2}-m_{1}$, $p-1)=1$. Let the sum in (4) be over all x and $y \bmod p$. If g has a nonzero constant term and neither m_{1} nor m_{2} is zero, then

$$
\begin{equation*}
A_{2}=p(p-1) \sum_{r=1}^{p-1}\left|a_{r}\right|^{2}+p^{2}\left|a_{0}\right|^{2} \tag{5}
\end{equation*}
$$

Otherwise,

$$
\begin{equation*}
A_{2}=p(p-1) \sum_{r=1}^{p-1}\left|a_{r}\right|^{2} \tag{6}
\end{equation*}
$$

Theorem II. Let $d=(n, p-1), \psi(t)=e^{2 \pi i(r \operatorname{ind}(t) / s)}$, where, naturally, $s \mid(p-1),(r, s)=1$ and $g^{\operatorname{ind}(t)} \equiv t(p)$ for g a primitive root $\bmod p$. If $d s \nmid(p-1)$, then $A_{1}=0$. If $d s \mid(p-1)$ and $\psi \chi^{n}$ is nonprincipal, then $A_{1}=p(p-1) d$. If $d s \mid(p-1)$ and $\psi \chi^{n}$ is principal, then $A_{1}=$ $p(p-1)(d-1)-(p-1)$.

The following is an immediate consequence of the first theorem.

[^0]
[^0]: Received November 21, 1963 and in revised form June 16, 1964. Research done under the auspices of the National Science Foundation.

