THE DEFICIENCY INDEX OF ORDINARY SELFADJOINT DIFFERENTIAL OPERATORS

A. Devinatz

This paper is concerned with the computation of the deficiency index of an ordinary self-adjoint differential operator with real coefficients. The operator, L, is supposed defined on $[0, \infty)$ and is regular at the origin. The deficiency index counts the number of L^{2} solutions to the equation $L y=z y$, where z is any nonreal complex number.

The results obtained include as rather special cases almost all of the results known to the author when the order of L is larger than two.

The principal tool used is an asymptotic theorem of N . Levinson.

We are interested in computing the deficiency index of an ordinary self-adjoint differential operator,

$$
\begin{align*}
L y=(-1)^{n} \frac{d^{n}}{d t^{n}}\left(q_{0} \frac{d^{n} y}{d t^{n}}\right) & +(-1)^{n-1} \frac{d^{n-1}}{d t^{n-1}}\left(q_{1} \frac{d^{n-1} y}{d t^{n-1}}\right) \tag{1.1}\\
& +\cdots+q_{n} y,
\end{align*}
$$

defined on the interval $[0, \infty)$, with the coefficients q_{k} real and measurable. We shall suppose that L is regular at the origin which means that $1 / q_{0}, q_{1}, \cdots, q_{n}$ belong to L^{1} on every finite interval [$0, T$].

The number m in the deficiency index (m, m) of the minimal operator L_{0} associated with the formal operator (1.1) is the dimension of the linear space of L^{2} solutions to any equation

$$
\begin{equation*}
L y=z y, \quad \operatorname{Im} z \neq 0 \tag{1.2}
\end{equation*}
$$

As is well known, and easy to show, it is always true that $n \leqq m \leqq 2 n$.
In the case where the order of the operator in (1.1) is two, fairly sophisticated tests are now available, [1], [5], which tell when the deficiency index in $(1,1)$. For an order larger than two very little seems to be known. Some results are due to M.A. Neumark [8] who obtains conditions that the deficiency index shall be either (n, n) or $(n+1, n+1)$. Other results are due to S.A. Orlov [9] and F.A. Neimark [7] who obtain the deficiency index of L_{0} when the coefficients q_{k} in (1.1) are essentially of polynomial growth as $t \rightarrow \infty$. These results will appear as rather special cases of the considerations which we shall present in this paper. As a by product we can obtain the result, originally proved by Glasmann [4], that the number m can

[^0]
[^0]: Received February 24, 1964. Research supported by NSF Grant G-24834.

