SIMPLE n-ASSOCIATIVE RINGS

D. L. Outcalt

This paper is concerned with certain classes of nonassociative rings. These rings are defined by first extending the associator $(a, b, c)=(a b) c-a(b c)$. The n-associator $\left(a_{1}, \cdots, a_{n}\right)$ is defined by

$$
\begin{align*}
& \left(a_{1}, a_{2}\right)=a_{1} a_{2}, \\
& \left(a_{1}, \cdots, a_{n}\right)=\sum_{k=0}^{n-2}(-1)^{k}\left(a_{1}, \cdots, a_{k}, a_{k+1} a_{k+2}, \cdots, a_{n}\right) . \tag{1.1}
\end{align*}
$$

A ring is defined to be n-associative if the n-associator vanishes in the ring. It is shown that simple 4 -associative and simple 5 -associative rings are associative; simple $2 k$-associative rings are ($2 k-1$) associative or have zero center; and simple, commutative n-associative rings, $6 \leqq n \leqq 9$, are associative. The concept of rings which are associative of degree $2 k+1$ is defined, and it is shown that simple, commutative rings which are associative of degree $2 k+1$ are associative. The characteristic of the ring is slightly restricted in all but one of these results.

The concepts of the n-associator and n-associative rings were defined by A. H. Boers [1; Ch. 3 and Ch. 4]. Our results extend Boers’ main result that an n-associative division ring is associative with minor restriction on the characteristic [1; Th. 6]. We do not consider 2associative rings.

To obtain our results, it is necessary to extend the concept of the n-associator. In a ring R, define $S(2 j+1,2 k+1), 1 \leqq j \leqq k$, by defining $S(2 j+1,2 j+1)$ to be the set of all finite sums of $(2 j+1)$ associators with entries in R, and then by defining $S(2 j+1,2 k+1)$, $k>j$, to be the set of all finite sums of $(2 j+1)$-associators $\left(a_{1}, \cdots, a_{2 j+1}\right)$ such that $\left(a_{1}, \cdots, a_{2 j+1}\right) \in S(2 j+1,2 k-1)$ and such that at least one of the $2 k-1$ entries of ($a_{1}, \cdots, a_{2 j+1}$) is in $S(3,3)$. For example, $\left(\left(\left(a_{1}, a_{2}, a_{3}\right), a_{4}, a_{5}\right), a_{6},\left(a_{7}, a_{8}, a_{9}\right)\right) \in S(3,9)$.

Clearly, a ring R is $(2 n+1)$-associative if and only if $S(2 n+1,2 n+1)=0$ in R. This leads us to call a ring $R(2 n+1)$ associative of degree $2 k+1$ if $S(2 n+1,2 k+1)=0$ in R. No mention of degree will be made in case $k=n$.

[^0]
[^0]: Received November 19, 1964. Presented to the American Mathematical Society, August 28, 1964. This research was supported by United States Air Force Grant No. AFOSR-698-65.

