# A CONVEXITY PROPERTY 

Raymond W. Freese

There exist a variety of conditions yielding convexity of a set, dependent upon the nature of the underlying space. It is the purpose here to define a particular restriction involving $n$-tuples (the $n$-isosceles property) on subsets of a straight line space and study the effect of this restriction in establishing convexity. By a straight line space is meant a finitely compact, convex, externally convex metric space in which the linearity of two triples of a quadruple implies the linearity of the remaining two. The principal theorem states that the $n$-isosceles property is a sufficient condition for a closed and arcwise connected subset of a straight line space to be convex if and only if $n$ is two or three.

In such a space $S$ we use two of the definitions stated by Marr and Stamey (4).

Definition 1. If $p, q, r$ are distinct points of $S$ such that at least two of the distances $p q, p r, q r$ are equal, then the points $p, q, r$ are said to form an isosceles triple in $S$.

Definition 2. A subset $M$ of $S$ is said to have the double-isosceles three-point property if two connecting segments of each of its isosceles triples belong to $M$.

A proof of (2) together with (4) shows that if $M$ is a closed connected subset of $S$ and possesses the double isosceles property, then $M$ is convex.

Definition 3. A subset $M$ of $S$ is said to have the $n$-isosceles property ( $n \geqq 2$ ) provided for every ( $n+1$ )-tuple $p_{1}, p_{2}, \cdots, p_{n+1}$ of distinct points of $M$ such that $p_{i} p_{i+1}=p_{i+1} p_{i+2}, i=1,2, \cdots, n-1$, at least $n$ of the connecting segments lie in $M$.

A comparison of the double isosceles property and $n$-isosceles property shows that in $S$ the two are equivalent for $n=2$. For $n$ greater than 2, the double isosceles property clearly implies the $n$ isosceles property but it is not immediately evident whether the two are equivalent. The question may be raised concerning the conditions under which the $n$-isosceles property is sufficient to replace the doubleisosceles property in the above-mentioned theorem yielding convexity.

