POINT-DETERMINING HOMOMORPHISMS ON MULTIPLICATIVE SEMI-GROUPS OF CONTINUOUS FUNCTIONS

R. S. DEZUR

Let X and Y be compact Hausdorff spaces, C(X) and C(Y)the algebras of real valued continuous functions on X and Y respectively with the usual sup norms. If T is an algebra homomorphism from C(X) onto a dense subset of C(Y) then by a theorem of Stone, T induces a homeomorphism μ from Y to X and it necessarily follows that Tf(y) = 0 if and only if $f(\mu(y)) = 0$.

In a more general setting, viewing C(X) and C(Y) as multiplicative semi-groups, let T be a semi-group homomorphism from C(X) onto a dense point-separating set in C(Y). No such map μ satisfying the above condition need exist. T is called point-determining in case for each y there is an x such that Tf(y) = 0 if and only if f(x) = 0. It is shown that such a homomorphism T induces a homeomorphism from Y into X in such a way that $Tf(y) = [\operatorname{sgn} f(x)] | f(x) |^{p(x)}$ for some continuous positive function p where x is related to y via the induced homeomorphism, that such a T is an algebra homomorphism followed by a semi-group automorphism, and that T is continuous.

Let X and Y be compact Hausdorff spaces, C(X) and C(Y) the algebras of all continuous real-valued functions on X and Y respectively with the usual sup norm. Let T be an algebra homomorphism of C(X)onto a dense set in C(Y). For each $y \in Y$ consider the mapping γ_y of C(X) into the reals defined by

$$\dot{\gamma}_{y}(f) = Tf(y)$$
.

 γ_y maps C(X) onto the reals for if Tf(x) = 0 for all $f \in C(X)$ then the image of T is not dense. The kernel is, by algebra, a maximal ideal in C(X). By a theorem of Stone [3, 80] there is a point $x \in X$ so that the kernel of γ_y is the set of all $f \in C(X)$ such that f(x) = 0, this point being uniquely determined.

Consider the map μ of Y into X which assigns to each $y \in Y$ the x as described above. If e and e_1 are the unit functions in C(X) and C(Y) respectively it is easy to see that $Te = e_1$ and that μ is one-toone. Now for each $f \in C(X)$ consider the function Tf(y)e - f = g in C(X). Then Tg(y) = 0 so that $g(\mu(y)) = 0$ and hence $Tf(y) = f(\mu(y))$. We especially note that